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Computational Chemistry
How Maths Develop Models to Understand Chemistry
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Fundamentals on Quantum 
Mechanics
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For a Mathematician

• A molecule is a collection of atoms:


• Carbon (C), omitted


• Oxygen (O)


• Hydrogen (H)


• Which are chemically bond:


• Simple sticks


• Double sticks

What is a Molecule?
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For a Mathematician

• A molecule is then a collection of:


• Atoms, atomic nuclei


• Electrons, which may not be bound to a 
single nucleus


• These two elements have very different 
properties


• Charge: nuclei (+) vs. electrons (–)


• Mass: m(H-nucleus) ≈ 1840 m(electron)

What is a Molecule?
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How to Describe a Molecule Mathematically? (I)
Quantum Mechanics in a Nutshell

• Nuclei and electrons are quantum particles, so they follow Quantum 
Mechanics


• Quantum particles have also wave properties, known a wave-particle duality


• “One may say that the potential possibility exists for atomic objects to appear 
or as a particle, or as a wave on dependence of the outer condition”, V. Fock


• To prove that, let’s see when an electron goes through two slits
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How to Describe a Molecule Mathematically? (II)
The Wavefunction

S. Ivanov, Theoretical and Quantum Mechanics, 1st Edition, Springer, Dordrecht, p.172
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Classical Particles Waves



How to Describe a Molecule Mathematically? (III)
The Wavefunction

• A 2 slit  can be reproduce with a 
monocristal


• Davisson and Gremer shot a 
beam of electrons against a 
monocrystal and saw the 
diffraction pattern


• The diffraction patter of an 
electron is that of a wave
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S. Ivanov, Theoretical and Quantum Mechanics, 1st 
Edition, Springer, Dordrecht, p.178



How to Describe a Molecule Mathematically? (IV)
The Wavefunction

• Consequently, a wavefunction can be associated to each quantum system (1st 
postulate of Quantum Mechanics)





• For a free particle, the wavefunction is easy to determine





• The value of  is proportional to the probability of finding that particle 

in 

Ψ(x, y, z, t) = Ψ(r, t)

Ψ(r, t) = A exp [−
i

ℏ
(Et − pr)]

Ψ(r, t)
2

dV

dV
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How to Describe a Molecule Mathematically? (IV)
The Wavefunction

•  can be a complex function, 


• Indeed, you can think of a wavefunction (wfn) in terms of a probability function.


• The wfn of the electrons of a molecule integrate to the total number of electrons of 

that molecule 


• The wfn of two non interacting, independent particles is the product of the wfn of 

each of the particles:  


• Indeed, by knowing the wavefunction of a system, you can calculate ANY property of it

Ψ(r) Ψ(r, t)
2

= Ψ*(r, t)Ψ(r, t)

∫
V

Ψe(r)*Ψe(r)dr = N

Ψ(r1, r2) = Ψ(r1) ⋅ Ψ(r2)
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How to Describe a Molecule Mathematically? (V)
Operators

• For each magnitude which can be measured (observable) an operator (mathematical operation) can 
be built (second postulate of Quantum Mechanics)


• The wavefunction is an eigenvector to that operator, the eigenvalue being what would be obtained if 
the magnitude were actually measured in the lab:


•
For the momentum: , 


•
For dipole moment: , 


•
For energy, Hamiltonian: , 

∂

∂r ∫
V

Ψ*(r, t)
∂

∂r
Ψ(r, t)dr = ⟨Ψ*(r, t)

∂

∂r
Ψ(r, t)⟩ = pΨ(r, t)

qr ∫
V

Ψ*(r, t) ⋅ qr ⋅ Ψ(r, t)dr = ⟨Ψ*(r, t) qr Ψ(r, t)⟩ = dΨ(r, t)

Ĥ ∫
V

Ψ*(r, t)ĤΨ(r, t)dr = ⟨Ψ*(r, t) Ĥ Ψ(r, t)⟩ = EΨ(r, t)
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How to Describe a Molecule Mathematically? (VI)
The Hamiltonian

• The Hamiltonian ( ) is the operator to calculate the total energy of a system


• Let’s write  for a molecule


• Kinetic energy operator:


•



•

Ĥ

Ĥ

̂TN =
1

2mN
( ̂p2

x + ̂p2
y + ̂p2

z) = ∑
N

ℏ

2mN

∂2

∂R2

̂Te = ∑
i

ℏ

2me

∂2

∂r2
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R: nuclear coordinates r: electronic coordinates

N: index running on nuclei i: index running on electrons 

mM: mass of each nucleus me: mass of the electron 

ZN: atomic number of nucleus e: charge of the electron



How to Describe a Molecule Mathematically? (VII)
The Hamiltonian

• Potential energy:


•



•



• Summing up together we have the final expression of the Hamiltonian:


•

VeN = − ∑
N

∑
i

qNe

ri

= − ∑
N

∑
i

ZNe2

ri

Vee = ∑
i

∑
j>i

e2

rj − ri

= ∑
i

∑
j>i

e2

rij

Ĥ = ∑
N

ℏ

2mN

∂2

∂R2
+ ∑

i

ℏ

2me

∂2

∂r2
− ∑

i
∑

N

ZNe2

r
+ ∑

i
∑
j>i

e2

rij
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R: nuclear coordinates

N: index running on nuclei 

mM: mass of each nucleus

ZN: atomic number of nucleus

r: electronic coordinates

i: index running on electrons 

me: mass of the electron 

e: charge of the electron



How to Describe a Molecule Mathematically? (VIII)
The Schrödinger Equation

• The Hamiltonian also allows us to calculate the wavefunction.


• The wavefunction must fulfil the Time Dependent Schrödinger Equation 
(TDSE):





• Which for the previous molecular Hamiltonian turns into: 

ĤΨ(r, R, t) = iℏ
∂

∂t
Ψ(r, R, t)

∑
N

ℏ

2mN

∂2

∂R2
+ ∑

i

ℏ

2me

∂2

∂r2
− ∑

i
∑

N

ZNe2

r
+ ∑

i
∑
j>i

e2

rij

Ψ(r, R, t) = iℏ
∂

∂t
Ψ(r, R, t)
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Let’s be practical

• The TDSE is a second order partial differential equation on different 
variables with crossed terms.


• “The underlying physical laws necessary for the mathematical 
theory of […] the whole of chemistry are thus completely known, 
and the difficulty is only that the exact application of these laws 
leads to equations much too complicated to be soluble”, Paul Dirac


• Firstly, let’s asume an ansatz for the function solution

From Theory to Reality
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A Practical Solution to the 
Schrödinger Equation

16



Solving the TD Schrödinger Equation (I)
Quantum Mechanics in a Nutshell

• Born-Huang Ansatz: ' is expressed in a basis of nuclear and electronic 

wavefunctions:


 


• Nuclear and electronic coordinates are now separated in   and 


•   and  constitute an orthonormal basis: 

🔝

Ψ(r, R, t) = ∑
i

χi(R, t)Φi(r; R)

χi(R, t) Φi(r; R)

χi(R, t) Φi(r; R)

⟨φiφi⟩ = 1; ⟨φiφj⟩ = 0;
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Solving the TD Schrödinger Equation (II)
Quantum Mechanics in a Nutshell

• Now Now TDSE turns into:





• Inserting the Born-Huang ansatz into the TDSE:





• And multiplying by 


( ̂TN + ̂Te + ̂VeN + ̂Vee) Ψ(r, R, t) = iℏ
∂

∂t
Ψ(r, R, t)

[ ̂TN(R) + Te(r) + V(r, R)]∑
i

χi(R, t)Φi(r; R) = iℏ
∂

∂t ∑
i

χi(R, t)Φi(r; R)

⟨Φj(r, R)

[ ̂TN + Ej] χj − ∑
i

Λji χi = iℏ
∂

∂t
χj
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Solving the TD Schrödinger Equation (IV)
Quantum Mechanics in a Nutshell

•
Let’s explain the last step: 


• Dirac brackets:  is a hand short notation for 


• Right hand side of the equation: 


• As the Born-Huang ansatz leads to an orthonormal basis, only  term survives:


[ ̂TN + Ej] χj − ∑
i

Λji χi = iℏ
∂

∂t
χj

⟨Φj(r, R) ∫ Φ*
j
(r, R)dr

j

∫ Φ*
j
(r, R)( ∂

∂t ∑
i

χi(R, t)) Φi(r; R)dr = ( ∂

∂t ∑
i

χi(R, t))∫ Φ*
j
(r, R)Φi(r; R)dr = χi(R, t)
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Solving the TD Schrödinger Equation (V)
Quantum Mechanics in a Nutshell

•
Left hand side: 


• Kinetic energy of nucleus : 


•
Energy of electron : 


• Coupling of nuclear and electronic degrees of freedom: 

[ ̂TN + Ej] χj − ∑
i

Λji χi

N ̂TN

j Ej = ⟨Φj
̂Te Φi⟩ + ⟨Φj

̂VeN Φi⟩ ⟨Φj
̂Vee Φi⟩

Λji =
ℏ

2mNe2 [⟨Φj ∇RΦi⟩∇R + ⟨Φj ∇2
RΦi⟩]
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Born-Oppenheimer Approximation (I)
Using Physics to Simplify

• So far, no approximation has been made.


• Let’s introduce the first one: Born-Oppenheimer Approximation: 


• The electronic  varies little with nuclear coordinates, , as me << mN


• That produces a decoupling of the TDSE into one equation depending only on nuclear 
coordinates and another equation depending of electronic coordinates:


Electronic Schrödinger Equation: 


Nuclear Schrödinger Equation: 

Φi ∇RΦi(r; R) ≈ 0

H̄eΦj(t, r; R) = iℏ
∂

∂t
Φj(t, r; R)

[ ̂TN(R) + Ej(R)] χj(R, t) = iℏ
∂

∂t
χj(R, t)
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Born-Oppenheimer Approximation (II)
Using Physics to Simplify

• The Born-Oppenheimer Approximation simplifies the solution of the TDSE


• Instead of crossed terms, now there are equations, depending on a set of 
coordinates each


• Physical Meaning: Electronic cloud adjust instantaneously to changes in the 
nuclear configuration. Electrons behaves as potential for nuclei.


• The small derivative coupling  is essential for the validity of the BO 
approximation

∇RΦi(r; R)

22



Born-Oppenheimer Approximation (III)
Using Physics to Simplify

• With the Born-Oppenheimer Approximation we don’t treat the electrons as 
isolated particles but rather as a potential in which the nuclei move
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From particles, e– To Potential, V(r) & nuclear forces, F(r) = ∇V(r)



The Stationary State (I)
Simplifying Even More

• In a majority of cases, in chemistry we are only interested in stable molecules, i. 
e. molecules in which the nuclei don’t move, stay still with time


• Forget about the nuclear SE! 


• The electronic part becomes simpler: 


• As the nuclei are fixed on time, the hamiltonian is constant in time 


• We can then assume that 

[ ̂TN(R) + Ej(R)] χj(R, t) = iℏ
∂

∂t
χj(R, t)

ĤeΦj(t, r; R) = iℏ
∂

∂t
Φj(t, r; R)

Ĥ(r; R)

Φj(t, r; R) = Φj(t) ⋅ ϕj(r; R)
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The Stationary State (II)
Simplifying Even More

• If we devide both sides of the equation by 





• What results in:








• The latter is an equation for the eigenfunctions of the operator , so the constant is the electronic 

energy 

Φj(t)ϕj(r; R)

iℏ

∂ϕ(t)

∂t

ϕj(t)
=

ĤΦ(r)
Φ(r)

iℏ
∂ϕ(t)

∂t
= const ⋅ ϕj(t)

ĤΦj(r; R) = const ⋅ Φj(r; R)

Ĥ
Ej
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The Stationary State (II)
Simplifying Even More

• What can be plugged into the time equation





• Integration leads that the time part is of an exponential form: 


• This phase term is usually dropped, as is doesn’t depend on 


• What leads to the Time Independent Electronic Schrödinger Equation:


iℏ
∂ϕ(t)

∂t
= Ejϕj(t)

Φj(t) = Aje
−i

Ej

ℏ
t

r

∑
i

ℏ

2me

∂2

∂r2
+ ∑

i
∑

N

qNe

r
+ ∑

i
∑
j>i

e2

rij

Φj(r; R) = EΦj(r; R)
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Recapping

• With two assumptions, we went from








• We removed 2 variables,  and , the latter depending only on 


• And that's enough because chemistry is only about the behaviour of electrons 

∑
N

ℏ

2mN

∂2

∂R2
+ ∑

i

ℏ

2me

∂2

∂r2
+ ∑

i
∑

N

qNe

r
+ ∑

i
∑
j>i

e2

rij

Ψ(r, R, t) = iℏ
∂

∂t
Ψ(r, R, t)

∑
i

ℏ

2me

∂2

∂r2
+ ∑

i
∑

N

qNe

r
+ ∑

i
∑
j>i

e2

rij

Φj(r; R) = EΦj(r; R)

R t r
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Getting Inspired by Atoms 




•
This equation still does’t have an analytic solution due to the term 


• For atoms with 1 electron, like Hydrogen atom, this term disappears and there 
is an analytic solution.

∑
i

ℏ

2me

∂2

∂r2
+ ∑

i
∑

N

qNe

r
+ ∑

i
∑
j>i

e2

rij

Φj(r; R) = EΦj(r; R)

∑
i

∑
j>i

e2

rij
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Getting Inspired by Atoms (I)
How to Represent an Electronic Wavefunction in a Practical Way

• Atoms are convenient, because in there the Hamiltonian is that of a 
central symmetric field. 


• It’s central because all forces point a single point


• It’s symmetric because there’s angular symmetry


• Under a central symmetric field is more convenient to represent the 

atomic wave function in polar coordinates 
Φi(r) = Ri(r)Yi(θ, ϕ)

(−
ℏ

2mer
2

∂

∂r (r2 ∂

∂r ) −
ℏ2

2me

∇2
θ,ϕ

r2
+

qNe

r ) Ri(r)Yi(θ, ϕ) = EiRi(r)Yi(θ, ϕ)
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Getting Inspired by Atoms (II)
How to Represent an Electronic Wavefunction in a Practical Way




• The solution of this is:


• For the radial part, the Leguerre polynomials: 


• For the angular part, the Legendre polynomials (spherical harmonics): 

(−
ℏ

2mer
2

∂

∂r (r2 ∂

∂r ) −
ℏ2

2me

Δθ,ϕ

r2
+

qNe

r ) Ri(r)Yi(θ, ϕ) = EiRi(r)Yi(θ, ϕ)

R(r) = Ln(r) = er
dn

drn (rne−r)

Y(θ, ϕ) = Ylm(θ, ϕ)
1

2π
A|m|

l
P|m|

l
(cosθ)eimϕ
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Getting Inspired by Atoms (II)
How to Represent an Electronic Wavefunction in a Practical Way

• The wave function of an electron is called orbital; depends only on the coordinates of 1 electron.


Hydrogenic orbitals obtained from solving the Schrödinger equation 


F. Jensen, Introduction to Computational Chemistry, 2nd Ed. 
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Getting Inspired by Atoms (III)
How to Represent an Electronic Wavefunction in a Practical Way

• The radial part is always of the form ,  being the atomic number


• However, in quantum mechanics  quite often this integral is solved, 

, difficult to solved with 


• Gaussian functions offer a nice alternative to it:


• The product of two Gaussian functions is another Gaussian function


• If , then , which is still easy to integrate

R1(r) = ke−
Zr
n Z

⟨R R⟩ = ∫ R(r)*R(r)dr R(r) = k1e
−k2r

R(r) = Aebr2

⟨R R⟩ = ∫ Aebr2

32



Getting Inspired by Atoms (IV)
Product of Gaussian Functions

• , and 


• 


•  is another gaussian function 


• ; 


• ; ; 

GA(r) = (
2α

π )
3
4

e−α(r + RA)
2

GB(r) = (
2β

π )
3
4

e−β(r + RB)
2

GA(r)GB(r)

GA(r)GB(r) = Ke−γ(r + RC)
2

γ = α + β Rc =
αRAβRB

α + β
K = (

2
π )

2

(αβ)
3
4 e

−
αβ

α + β (RA − RB)
2

33

GA(r)

GA(r)GB(r)

GA(r)



Getting Inspired by Atoms (V)
How to Represent an Electronic Wavefunction in a Practical Way

• It is therefore most common to represent the radial part as an expansion of 

Gaussian functions to fit the  exponential:





• The coefficients  and  are optimised for each atom to reproduce their 
properties 


• The set of Gaussians is call basis set, as form a basis on which  is 
spanned 

e−ar

R(r) = ∑
i

aie
−bir

2

ai bi

R(r)
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How to Represent an Electronic Wavefunction in a Practical Way

• The more number of basis 
functions, the more accurate


• The more number of basis 

functions, the more  

integrals to solve


• Experience show that 6 
Gaussians are accurate enough

⟨GA GB⟩

Getting Inspired by Atoms (VI)

35

Comparison of Slater, STO-1G and STO-3G functions for Hydrogen, taken from 


E. Lewars, Computational Chemistry, 1st Ed., Kuwler, New York, p. 213



From Atoms to Molecules (I)

• In the same way that molecules are made by 
atoms, we can build a molecular wave function 
from atomic orbitals:


• Wave function, 3N-dimensional function, N 
being the number of atoms


• Orbital, 3-dimensional function


• The orbital ansatz reduces the dimensionality 
of the equations to solve
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From Atoms to Molecules (II)

• We first define a molecular orbital , a function 
describing an electron in a molecule


• As molecules are made by atoms, a molecular orbital can 
be expressed as linear combination of atomic orbitals:





• Considering the electrons as non interacting, a molecular 
wave function can be express as product of molecular 
orbitals:


φi

φi = ∑
α

cα,i χα

Φ(r) = Πφi(ri)
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From Atoms to Molecules (III)

• And we plug this molecular wave function into the Schrödinger equation





• Remember that we said “assuming non-interacting electrons”?


•
This is contradictory as the term  measures the interaction of electron  with electron . 


• We had said that this term makes the equation impossible to solve.

∑
i

ℏ

2me

∂2

∂r2
+ ∑

i
∑

N

qNe

r
+ ∑

i
∑
j>i

e2

rij

Φ(r; R) = EΦ(r; R)

e2

rij

i j

38



From Atoms to Molecules (IV)

•
Indeed, the  is approximated so that, within the framework of non 

interacting particles, the interaction between them can still be described as 
precise as possible


• The two main approximations with this ansatz are


• These two are different ways of describing the electronic repulsion within the 
framework of non-interacting electrons 

e2

rij

39

Hartree-Fock Density Functional Theory



Recapping
Practical Guide for Computing Wavefunctions of Electrons

1. We start with the electronic Schrödinger equation: 




2. We use a set of Gaussian functions to represent atomic orbitals, namely basis set: 


3. We linearly combine these atomic orbitals to make the molecular orbitals 


4. We make an assumption to describe the electronic repulsion term 


5. We solve the resulting equation and obtain the molecular wavefunction, , and its energy, 

∑
i

ℏ

2me

∂2

∂r2
+ ∑

i
∑

N

qNe

r
+ ∑

i
∑
j>i

e2

rij

Φe(r; R) = EeΦe(r; R)

ϕk(r) = ∑
n

aie
−bnr

2

φl(r) = ∑
k

ϕk(r)

∑
i

∑
j>i

e2

ri j

Φe(r) Ee
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The Potential Energy Surface
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Born-Oppenheimer Approximation
Using Physics to Simplify

• With the Born-Oppenheimer Approximation we don’t treat the electrons as 
isolated particles but rather as a potential in which the nuclei move

42

From particles, e– To Potential, V(r) & nuclear forces, F(r) = ∇V(r)



The Potential Energy Surface

• Remember!, the outcome of the electronic 
Schrödinger Equation is the potential in which 
the nuclei are embedded (Born-Oppenheimer 
Approximation)


• The solution is also called Potential Energy 
(Hyper)Surface (PES)


• For a diatomic molecule, it depends only on 1 
coordinate: the bond distance between the 
nuclei


• It follows the form of a Morse potential: 

V(r) = De (1 − e−α(r−req))
2

43



The Harmonic Approach (I)
Getting Molecular Frequencies

• Around the minimum, the potential can be 
approximated to a parabola


• It’s equivalent to making a second order Taylor 
expansion around the minimum


• There’s another system in physics with a quadratic 
potential: the Harmonic Oscillator 


; 


•  is the oscillator strength,  is the frequency,  is 

the reduced mass and  and  atomic masses.

V(x) = k (x − xo)
2

k =
(2πν)2

μ
; μ =

m1m2

m1 + m2

k ν μ
m1 m2

44



The Harmonic Approach (II)
Getting Molecular Frequencies

• Therefore, around the minimum, a molecule 
can be approximated as a collection of 

harmonic oscillators of 


• , the force constant, measures the stiffness of 
the molecule towards that vibration.


•  is obtained by the second derivative of the 
second derivative of the energy


• Indeed, diagonialisation of the Hessian renders 
the force constants of all the vibration modes

ki

ki

k

45

Diagonalisation of the Hessian matrix of a triatomic 

molecule, . Each atom is described by 3 

Cartesian coordinates, hence the Hessian depends on 9 

coordinates, q1-9. Taken from E. Lewars, Computational 

Chemistry, 1st Ed., Kuwler, New York, p. 31.

H = PkP−1



The Harmonic Approach (III)
Internal Coordinates

• In the the Jupyter Notebook we’ve seen that:


• 6 (or 5) eigenvalues of the Hessian matrix are 0, corresponding to 
rotation and translation


• Only molecular vibrations change 


• As eigenvectors are orthogonal, vibrations constitute a new basis set 
to represent a molecule


• Vibrations as coordinates are powerful: define the direction where  
really changes


• We did that unconsciously when representing N2 just with the bond 
distance


• These are also known as internal coordinates or Z-matrix

V(r)

V(r)

46

O

H 1 r

H 1 r 2 a

r = 0.975 Å

a = 105º



The Harmonic Approach (IV)
Infrared Spectra

• Molecular Vibrations constitute the 
Infrared (IR) spectrum of the 
molecule


• Position of the band: 


•
Intensity of the band: ,  is 

the molecular dipole moment

νi

Ii =
∂μ

∂νi

μ

47

Taken from https://chemistry.stackexchange.com/questions/

162316/why-is-this-graph-of-vibration-spectroscopy-like-this  

https://chemistry.stackexchange.com/questions/162316/why-is-this-graph-of-vibration-spectroscopy-like-this
https://chemistry.stackexchange.com/questions/162316/why-is-this-graph-of-vibration-spectroscopy-like-this


The Harmonic Approach (V)
Zero Point Energy

• Heisenberg's Uncertainty Principle: “there is 
inherent uncertainty in the act of measuring a 

position and velocity simultaneously”: 


• Temperature is the measure of the movement of 
the atoms.


• If in 0K the molelcule would reach the bottom of 

the well,  and , what’s not allowed


• Molecules never reach the bottom of the potential 
⇒ they're always moving

ΔxΔp ≥
ℏ

2

x = 0 p = 0

48



The Harmonic Approach (VI)
Zero Point Energy

• Through the partition function, each vibrational mode 
contributes to the internal energy of the molecule:


•



•  is the vibrational quantum number, the vibrational state of 
the molecule.


•
At ,  and 


•  is known as the Zero Point Energy (ZPE), an 
energy the molecule ALWAYS has, even at 0K.

Evib =
3N−6(5)

∑
i=1

(ni +
1
2 ) hνi

ni

T = 0K ni = 0 Evib(T = 0) =
1
2

3N−6(5)

∑
i=1

hνi

Evib(T = 0)

49

ZPE



From Vibrations to Thermodynamics (I)
Calculation of Real Chemistry

• The partition function makes the link between properties of a molecule and properties of a 
macromolecular system.


• It therefore establish a relation to calculate the enthalpy of a system:


• 


• 


•



•

Htrans =
5
2

RT

Hrot =
3
2

RT

Hvib = R

3N−6(5)

∑
i

(
hνi

2k
+

hνi

k

1
ehνi/kT − 1 )

H = Htrans + Hrot + Hvib
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From Vibrations to Thermodynamics (II)
Calculation of Real Chemistry

• Entropy can be calculated in an analogous way:


•



•



•

Strans =
5
2

R + R ln
V

NA
(

2πMkT

h2 )
3
2

Srot = R
3
2

+ ln
π

σ ( 8π2kT

h2 )
3
2

I1I2I3

Svib = R

3N−6(5)

∑
i

(
hνi

kT

1
ehνi/kT − 1

− ln (1 − e−
hνi
kT ))
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• 


• And the total entropy is built:


• 


• This is already programmed


Selec = R ln go

S = Strans + Srot + Svib + Selec



From Vibrations to Thermodynamics (III)
Calculation of Real Chemistry

• And with  and , calculation of Gibb’s free energy is possible:


• 


• And with that, you can calculate the  of a reaction:


•

H S

G = H − TS

ΔG

ΔGreaction = Gproduct − Greactant

52



Recapping
Calculating Thermodynamics of Molecules and Reactions

• Around the minimum, the Potential Energy Surface can be approximated by a 
harmonic (quadratic) potential


• Under this harmonic approximation, the molecular degrees of freedom can be 
represented as a collection of harmonic oscillators 


• The diagonalisation of the Hessian of the potential renders the molecular vibrations


• The vibrations constitute a new set of coordinates, the internal coordinates, more 
convenient to represent the molecule


• With the vibrations, the partition function is  built and, hence, the thermodynamics 
of the molecule, and its reactions, can be calculated.
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Optimising the Molecular Geometry (I)
Complexity of Potential Energy Surface

• So far, only molecules at the minimum of the PES 
considered


• How be sure that the molecule is at the minimum?


• PES are indeed  very complex


• Minima


• Saddle points


• Maxima


• We need to make sure where the molecule as: 
OPTIMISE

54

Different Stationary Points in a multidimensional 

energy surface. Taken form F. Jensen, Introduction 

to Computational Chemistry, 2nd Ed., p 380



Optimising the Molecular Geometry (II)
Complexity of Potential Energy Surface

55

Possible stationary points for 1-

propen-2-ol (left). Computed PES 

along the HCC=C dihedral and 

H-O-C=C dihedral coordinates. 

Taken from E. Lewars, 

Computational Chemistry, 1st 

Ed., Kuwler, New York, p. 24.



Optimising the Molecular Geometry (III)
Chemical Meaning of Stationary Points

• Stationary points fulfil that  


• Not only minima are interesting in chemistry


• Minima are stable species: 


• Reactants and products


• Reaction intermediates


• Saddle points: Transition States of reactions


• Maxima in one direction: reaction coordinate 


• Minimum in all others, minimum energy path (MEP)

∇V(x) = 0

ξ
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Optimising the Molecular Geometry (IV)
Chemical Meaning of Stationary Points

• Finding the stationary points we can determine the most 
important parameters of a chemical reaction


• Reaction Energy:





• Activation Energy





• Reaction rate / probability:


ΔHR = ∑ Hproducts − ∑ Hreactants

ΔG# = GTS − ∑ Greactants

k =
κkBT

h
e−

ΔG#
RT
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Optimising a General Function

• Stationary points fulfil 


• Finding the minima of an analytical function is easy.


• ; ; 


• How calculate the minimum of a numerical 
function?


•  depends on 3Natoms – 6 variables!! 


• Taylor expansion of the function, 

∂

∂x
f(x) = 0

f(x) = a(x + b)2 df

dx
= 2a(x + b) xmin = − b

V(x)

V(x)
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Simplex Method
0th-order Method

• The easiest way it so asume a 0th-order expansion, 




• Constructs an irregular polyhedron with just the 
value of the function.


• Allows contractions and expansions to reach the 
minimum.


• 🙂 Only the value of  needed


• ☹ Not so efficient with many variables, as is the 
case for molecular PES.

V(x) |
x0

≈ V(x0)

V(x0)
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Taken from Wikipedia: https://en.wikipedia.org/

wiki/Simplex_algorithm 

https://en.wikipedia.org/wiki/Simplex_algorithm
https://en.wikipedia.org/wiki/Simplex_algorithm
https://en.wikipedia.org/wiki/Simplex_algorithm


Steepest Descent (I)
1st-Order Method

• 1st-order approximation, 


• Gradient shows the direction of steepest ascent.


• Following opposite direction will lead to minimum


• 


• Line search to find the optimum value for 


• Zig-zag search: next step moves orthogonal to previous 
one

V(x) |
x0

≈ V(x0) + g0
T(x − x0)

xk = xk−1 − α ⋅ ∇k−1

α
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Steepest descent minimisation. Taken form F. 

Jensen, Introduction to Computational Chemistry, 

2nd Ed., p 384



Steepest Descent (II)
1st-Order Method

• Accurate line search is needed to guarantee convergence to minimum


• An option is the Armijo rule (from Wolfe conditions):





•  is the parameter to optimise,  is a constant between 0 and 1 and  is the search direction


• Usually line search methods are approximate, and the algorithm ends up oscillating around the minimum 


• 🙂 Bring system close to the minimum


• ☹ Can oscillate around minimum 


• ☹ Can only locate minima

f(xk + αkpk) ≤ f(xk) + c1αkp
T
k ∇f(xk)

α c1 p
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Conjugated Gradients (I)
1st-Order Method

• Overcomes deficiencies of steepest descent: “undoing” of previous 
step as going in is perpendicular direction.


• The step is a combination of gradient of current and previous step:


• 


• If surface is quadratic, convergence assured in Nvar steps


•  can be estimated as before


• A popular way to estimate  is the Polak-Ribiere relation: 

xk = xk−1 − α (∇k + β∇k−1)

α

β

βPR
i =

gT
i ⋅ (gi − gi−1)

gT
i−1 ⋅ gi−1
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Steepest Descent

Conjugated Gradient

Comparison between Steepest Descent and 

Conjugated Gradient algorithms. The latter converges 

in n=2 steep. Taken from: https://en.wikipedia.org/

wiki/Conjugate_gradient_method 

https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Conjugate_gradient_method


Conjugated Gradients (II)
1st-Order Method

• CG works best for near quadratic surface:


• 🙂 The PES is near quadratic around minima


• 🙂 Better performance than Steepest Descent


• ☹ In real applications,  needs to be reset to 0 after several steps


• ☹ Can only locate minima

β
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Newton-Raphson Methods (I)
2nd-Order Methods

• Newton-Raphson methods go beyond by approximation 
the function to a 2nd order Taylor expansion: 

 


• The step can be derived by requiring  ⇒



• NR finds the solution of a quadratic function in a single 
step


• The real PES  contains terms beyond second order, 
NR leads to an iterative approach to stationary point

V(x) |
x0

= V(x0) + gT
0(x − x0) +

1
2

(x − x0)
TH0(x − x0)

g = 0
(x − x0) = − H−1g

V(x)
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Iterative optimisation of  with the NR algorithm. 

Taken from https://www.geeksforgeeks.org/

program-for-newton-raphson-method/ 

f(x)

https://www.geeksforgeeks.org/program-for-newton-raphson-method/
https://www.geeksforgeeks.org/program-for-newton-raphson-method/
https://www.geeksforgeeks.org/program-for-newton-raphson-method/


Newton-Raphson Methods (II)
2nd-Order Methods

• The NR method optimises to the nearest 
stationary point whatever that is: minimum, saddle 
point of maximum


• 😃 Locate Transition States!


• The size of the step should be limited, otherwise 
the algorithm can shoot the step far away from the 
solution (trust radius):


• The closer to the stationary point, the smaller 
the step.


• 😢 Computing  can take A LOT of timeH
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Converged of NR algorithm with different starting 

points. Taken from https://www.cup.uni-

muenchen.de/ch/compchem/geom/nr.html 

https://www.cup.uni-muenchen.de/ch/compchem/geom/nr.html
https://www.cup.uni-muenchen.de/ch/compchem/geom/nr.html


Pseudo Newton-Raphson Methods (I)
1st or 2nd-Order Methods

• Main drawback of NR Algorithm: calculation of  in each optimisation step.


• What if it could be just updated?: 


• Only the initial  needs be calculated


• For minimisation, the BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm is preferred: 




• BFGS only allows for positive eigenvalues of  ⇒ not possible to optimise Transitions States:


•
For that, the Powell update is used: 

H

Hk+1 = Hk + ΔH

H0

ΔHBGFS =
ΔgTΔg

ΔgTΔx
−

HΔxΔxTH

ΔxTHΔx

H

ΔHPowell =
ΔxTΔx

ΔxTΔg
−

HΔgΔxTH

ΔgTHΔg
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Pseudo Newton-Raphson Methods (I)
1st or 2nd-Order Methods

• The success of the optimisation depends on the 

initial 


• For minima: almost anything works, even 




• For Transition States and accurate Hessian is 
needed.


• ☹ Pseudo NR need more iterations than true NR


• 😃 Pseudo NR find the stationary point usually 
much faster than true NR ⇒ preferred method

H0

H0 = 1
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Recapping (I)
Finding Chemical Structures and Reaction Parameters

• The PES has a complex shape and their stationary points 
correspond to chemical structures: 


• Minima: reactants, products and reaction intermediates


• Saddle points: transition states


• Reaction energy and activation barrier can be calculated 
through the difference in energy of:


• 


• ; 

ΔHR = ∑ Hproducts − ∑ Hreactants

ΔG# = GTS − ∑ Greactants k =
κkBT

h
e−

ΔG#
RT
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Recapping (II)
Finding Chemical Structures and Reaction Parameters

• Finding stationary points in the PES is key to understand its chemistry:


• Pseudo Newton Raphsom algorithms are the method of choice


• A good guess of the geometry helps to find the stationary point, specially 
for Transition States


• For Transitions States the initial Hessian  needs to be calculated 
accurately. 

H0
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Computational Chemistry at 
Work

70



Illustrating the Concepts (I)
Prediction of Molecular Geometries

• Start with H2O, exp: ;  ROH = 0.9578 Å θHOH = 104.49 ∘
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Hartree-Fock (HF)

Density Functional Theory (DFT)

Taken form F. Jensen, Introduction to Computational Chemistry, 2nd Ed., p 351-353



Illustrating the Concepts (II)
Prediction of Molecular Geometries
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Taken from E. Lewars, Computational Chemistry, 1st Ed., Kuwler, New York, p. 401-404



Illustrating the Concepts (III)
Dipole Moment
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Taken form F. Jensen, Introduction to Computational Chemistry, 2nd Ed., p 358, p. 372



Illustrating the Concepts (IV)
Vibrational Frequencies
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Taken form F. Jensen, Introduction to Computational Chemistry, 2nd Ed., p 351-353



Illustrating the Concepts (V)
Vibrational Frequencies - IR Spectrum
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Taken from E. 

Lewars, 

Computational 

Chemistry, 1st 

Ed., Kuwler, New 

York, p. 414



Illustrating the Concepts (V)
Reaction Energies
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Resources 
To Perform Calculations:

78

😃 😫

PySCF
Flexible, good for education


Very performant, specially for GPUs


Easy to customise

Requires a higher know-how


Python skills required


Not so well documented

Psi4
Flexible, good for education


Very performant, specially for GPUs


Easy to customise

Requires a higher know-how


Python skills required


Not so well documented

ORCA

Very intuitive and easy to use


No programming skills required


Many types of calculations work out of the box


Very performant


Good documentation

Out of the box, not possible to do what's not 

implemented

https://github.com/pyscf/pyscf
https://psicode.org
https://orcaforum.kofo.mpg.de/app.php/portal


Resources 
To Create Coordinates, Inputs and Visualize results
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😃 😫

NGLViwer
Run from a Jupiter Notebook


Easy to install

Requires a higher know-how


Python skills required


Badly documented

Avogadro
Very intuitive and easy to use


Supports most of more common formats

Can be a bit buggy


Restricted with the type of graphics generated, 

postporcessing might be needed

JMol
Supports most of more common formats


Well documented

Sometimes operation is not so straight forward


Restricted with the type of graphics generated, 

postporcessing might be needed

Pymol
Supports most of more common formats


Well documented


Very flexible, you can do many visualisation types

Python skills required

VMD
High quality graphics


Well documented and large community support


Very flexible, you can do many visualisation types

Programming skills required, mainly TCL


