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Fundamentals on Quantum
Mechanics




What is a Molecule?

For a Mathematician

e A molecule is a collection of atoms:
e Carbon (C), omitted

 Oxygen (O)

O
\)\/ O
~
e Which are chemically bond: I |
. . / O
 Simple sticks /\(\H/

* Double sticks Aspirin 0




What is a Molecule?

For a Mathematician

e A molecule is then a collection of:
e Atoms, atomic nuclel

* Electrons, which may not be bound to a
single nucleus

 These two elements have very different
properties

» Charge: nuclei (+) vs. electrons (-) Aspirin

 Mass: m(H-nucleus) = 1840 m(electron)
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How to Describe a Molecule Mathematically? (l)
Quantum Mechanics in a Nutshell

* Nuclei and electrons are quantum particles, so they follow Quantum
Mechanics

 Quantum particles have also wave properties, known a wave-particle duality

* “One may say that the potential possibility exists for atomic objects to appear
or as a particle, or as a wave on dependence of the outer condition”, V. Fock

* [o prove that, let’s see when an electron goes through two slits



How to Describe a Molecule Mathematically? (ll)
The Wavefunction

Classical Particles
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Figure 7-10. Transition of a beam of classical particles trough two slits 4, and 4, (S - source,

E - screen, I - intensity): a) the slit 4, is closed; b) the slit 4, is closed; c) the both slits are
opened - their intensities add, 1.e. the total intensity 1s /,, =1 +1,.

E

Figure 7-11. Transition of a wave trough two slits 4; and 4,: a) the slit 4, is closed; b) the slit
A, 1s closed; c) the both slits are opened the interference-diffraction picture is not the sum of

the both diffraction picture, 1. e. the total intensity is not a sum of the separate
intensities /[, =1, +1,.

S. lvanov, Theoretical and Quantum Mechanics, 1st Edition, Springer, Dordrecht, p.172



How to Describe a Molecule Mathematically? (lll)
The Wavefunction

A2 slit can be reproduce with a
monocristal

* Davisson and Gremer shot a
beam of electrons against a
monocrystal and saw the
diffraction pattern

* The diffraction patter of an _ , j
on at monocrystal (a); The electrons reflected from successive atomic layers with a

eleCt ron IS that Of d wave path-length A =2dsin@ interfere according to the de Broglie hypothesis and as a result
one get the diffraction picture (b).

S. lvanov, Theoretical and Quantum Mechanics, 1st
Edition, Springer, Dordrecht, p.178



How to Describe a Molecule Mathematically? (IV)
The Wavefunction

 Consequently, a wavefunction can be associated to each quantum system (1st
postulate of Quantum Mechanics)

Y(x,y,z,1) = ¥(r,1)

* For a free particle, the wavefunction is easy to determine

l
Y(r,7) = Aexp [—% (Et — pr)]

2
« [The value of | Y(r, 1) | dV is proportional to the probability of finding that particle
indV



How to Describe a Molecule Mathematically? (IV)
The Wavefunction

. Y(r) can be a complex function, |‘I’(r, f) | 7 = Y*(r, HWY(r, 1)

* |ndeed, you can think of a wavefunction (wfn) in terms of a probability function.

 The win of the electrons of a molecule integrate to the total number of electrons of

that molecule [ VY, (r)*¥Y (r)dr = N
Vv

 The win of two non interacting, independent particles is the product of the wfn of
each of the particles: W(ry,r,) = WY(ry) - ¥(r,)

* |ndeed, by knowing the wavefunction of a system, you can calculate ANY property of it
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How to Describe a Molecule Mathematically? (V)

Operators

* For each magnitude which can be measured (observable) an operator (mathematical operation) can

be built (second postulate of Quantum Mechanics)

 The wavefunction is an eigenvector to that operator, the eigenvalue being what would be obtained if

the magnitude were actually measured in the lab:

0 0
For the momentum: —, I Y*(r, ) —WY(r, t)dr = <‘P*(r, f)
° or Jy or

0

or

Y(r, t)> = pY¥(r, 1)

. For dipole moment: gr, J Y*(r, 1) - gr - Y(r, t)dr = <‘I’*(r, t) | qr | Y(r, t)> = d¥(r, 1)

Vv

. For energy, Hamiltonian: H, J W (r, )HY(r, )dr = <‘P*(r, 1)
Vv

11
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H

Y(r, t)> = EY(r, 1)



How to Describe a Molecule Mathematically? (V)
The Hamiltonian

A\

« The Hamiltonian (f) is the operator to calculate the total energy of a system

e Let’s write H for a molecule 2 l
o ¢4—m7M8Mmm P o

* Kinetic energy operator: \ 12 /v

. ] ho 0 " & 4
7 = ( 7
N px p pz (+2)
y 2mN g ~ 2my OR?
. ho 0
T — R: nuclear coordinates r: electronic coordinates
® € 2 N: index running on nuclei I: Index running on electrons
- 2m, or
l mm: mass of each nucleus Me: Mass of the electron

ZN:. atomic number of nucleus e: charge of the electron
12



How to Describe a Molecule Mathematically? (VIi)
The Hamiltonian

* Potential energy:

——zzqfﬁ—zzzf T

=23 —22— |

I > I >

* Summing up together we have the final expression of the Hamiltonian: R: nuclear coordinates

N: index running on nuclei
) ) mm: mass of each nucleus
h 6 h d ZNe Zn: atomic number of nucleus
—_— E E — E E + E E - r: electronic coordinates
2m 0R2 ) 2m€ 01”2 i: index running on electrons

! L >l me: mass of the electron
e: charge of the electron
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How to Describe a Molecule Mathematically? (Vi)
The Schrodinger Equation

e The Hamiltonian also allows us to calculate the wavefunction.

 The wavefunction must fulfil the Time Dependent Schrodinger Equation
(TDSE):

. 0
HY(r,R, 1) = ihE‘P(r, R, 1)

* Which for the previous molecular Hamiltonian turns into:

ho 07 hoo ZNe 0
; 2y OR? ) om, or2 2 Z + ) 2 ¥(r,R,0) = ih—¥(r,R, 1)

i € [ >0
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From Theory to Reality

Let’s be practical

« The TDSE is a second order partial differential equation on dn‘ferent
variables with crossed terms.

o “The underlying physical laws necessary for the mathematical
theory of [...] the whole of chemistry are thus completely known,
and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble”, Paul Dirac

* Firstly, let’s asume an ansatz for the function solution

15



A Practical Solution to the
Schrodinger Equation



Solving the TD Schrodinger Equation (l)

Quantum Mechanics in a Nutshell

« Born-Huang Ansatz: ¥ is expressed in a basis of nuclear and electronic
wavefunctions:

Y(r,R,7) = ) 7R, H®(r;R)

» Nuclear and electronic coordinates are now separated in y,(R, 7) and @ (r; R)

» /R, 1) and @ (r; R) constitute an orthonormal basis:

<§”i€”i> = 1; <€”i€”j> = 0; Tg;

17



Solving the TD Schrodinger Equation (ll)

Quantum Mechanics in a Nutshell

* Now Now TDSE turns into:

A\ A\ A\ A a
(TN + T+ 0+ Vee> W(r.R.1) = ih— W(r.R. 1)

* Inserting the Born-Huang ansatz into the TDSE:

- i
TVR) + 1) + VI, R)] Z 1R D R) = ih— Z 7(R, )@ (r; R)

. And multiplying by <CI)J-(1‘, R)

_T\N+Ej_ Z il = lh—

18



Solving the TD Schrodinger Equation (IV)

Quantum Mechanics in a Nutshell

Let’s explain the last step: l N T E] Z iXi = zh—

. Dirac brackets: <CI>]-(I', R) | is a hand short notation for J@J*(r, R)dr

* Right hand side of the equation:

 As the Born-Huang ansatz leads to an orthonormal basis, only j term survives:

J@*(r R) iz v(R, 1) )| ®(r;R)dr = 32 (R, ) [cp*(r R)® (r; R)dr = y(R, 1)
joNo ot i ANt AN ot i ANt joNo AN ANt
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Solving the TD Schrodinger Equation (V)

Quantum Mechanics in a Nutshell

Left hand side: [ v+ E] Z iiXi

» Kinetic energy of nucleus /V: TN

/\

I

€

VeN

. Energy of electron ;: Ej = <CI>]-

<I>l-> +(,

* Coupling of nuclear and electronic degrees of freedom:

h
_ )
Ny = e [<(Dj‘ VR(Di>VR T <(Dj‘ VR(Di>]

20




Born-Oppenheimer Approximation (l)
Using Physics to Simplify

e So far, no approximation has been made.

* | et’s introduce the first one: Born-Oppenheimer Approximation:

» The electronic @, varies little with nuclear coordinates, V ,®.(r; R) =~ 0, as me << mn

* That produces a decoupling of the TDSE into one equation depending only on nuclear
coordinates and another equation depending of electronic coordinates:

_ 0
Electronic Schrédinger Equation: H @ (7, 1; R) = iha—CDj(t, r; R)
[

A~ 0
Nuclear Schrédinger Equation: | T(R) + E(R)| x(R, 1) = ihg xR, 1)

21



Born-Oppenheimer Approximation (ll)
Using Physics to Simplify

 The Born-Oppenheimer Approximation simplifies the solution of the TDSE

* |nstead of crossed terms, now there are equations, depending on a set of
coordinates each

* Physical Meaning: Electronic cloud adjust instantaneously to changes in the
nuclear configuration. Electrons behaves as potential for nuclei.

» The small derivative coupling V ,®.(r; R) is essential for the validity of the BO
approximation

22



Born-Oppenheimer Approximation (lll)
Using Physics to Simplify

* With the Born-Oppenheimer Approximation we don’t treat the electrons as

From particles, e- To Potential, V(r) & nuclear forces, F(r) = V V(r)

23



The Stationary State (l)

Simplifying Even More

* |n a majority of cases, in chemistry we are only interested in stable molecules, I.
e. molecules in which the nuclei don’t move, stay still with time

A 0
. Forget about the nuclear SE! [TN(R) + Ej(R)] )(J-(sz iha )(j(R, t)

. The electronic part becomes simpler: I—AIECDj(t, r;R) = iha—CDj(t, r; R)
[

 As the nuclei are fixed on time, the hamiltonian is constant in time I-AI(I'; R)
» We can then assume that (7, r; R) = ©(7) - ¢(r; R)

24



The Stationary State (ll)

Simplifying Even More

. If we devide both sides of the equation by (I)j(t)q/)j(r; R)
op(t)

. Ot ﬁ@(r)
in =
¢i(1) O(r)
* What results In:
., 09(1)
ih Ey = const-gbj(t)

H®(r; R) = const - @ (r; R)

* The latter is an equation for the eigenfunctions of the operator I—AI . SO the constant is the electronic
energy E]

25



The Stationary State (ll)

Simplifying Even More

 What can be plugged into the time equation

0p(1)
ot

in

= Ep(1)

5
+ Integration leads that the time part is of an exponential form: ® (1) = Ae™"7"

* This phase term is usually dropped, as is doesn’t depend on r

 What leads to the Time Independent Electronic Schrodinger Equation:

2
2 ZZ :rz | Z 2 q];,e | Z Zi— O.(r; R) = ED(r; R)
¢ i N

2
i j>i Y

l

26



Recapping

 With two assumptions, we went from

ho 0 | ho 0 | qne e 0
I ) Es IRV

0
N i i > U

2
Yot XL+ P T S0k = EoR
€ i N

2
i i > Y

« We removed 2 variables, R and ¢, the latter depending only on r

 And that's enough because chemistry is only about the behaviour of electrons

27



Getting Inspired by Atoms

h o 0
gﬁJFZZWJFZZ

I >

@ (r;R) = E®(r; R)

2

2

e
This equation still does’t have an analytic solution due to the term Z Z —
i > U

 For atoms with 1 electron, like Hydrogen atom, this term disappears and there
IS an analytic solution.

28



Getting Inspired by Atoms (l)

How to Represent an Electronic Wavefunction in a Practical Way

e Atoms are convenient, because in there the Hamiltonian is that of a
central symmetric field.

e |t’s central because all forces point a single point
e |t’s symmetric because there’s angular symmetry

 Under a central symmetric field is more convenient to represent the
atomic wave function in polar coordinates @ (r) = R.(r)Y (0, ¢)

}/'_
or

Z) 0 %, hZ VZ .
( ( 2 ) - > T " )Ri(r)Yi(‘ga ¢) = ER(r)Y.(0, )

2m,r? or 2m, 12 r

29

X = rsinfcos@
y = rsin@sing@
z=rcosl



Getting Inspired by Atoms (ll)

How to Represent an Electronic Wavefunction in a Practical Way

2 A
(_ h 0 ( 2 0 ) _ N Ty +%> R(nY (0, p) = ER(r)Y(0, )

— I/' S——
2m,r? or or 2m, r? r

e The solution of this iIs;

n
n_,—r
- (r'e”")
* For the angular part, the Legendre polynomials (spherical harmonics):
Y(0, ) = Y,,,(0, p)——=A""P"(cosO)e™?

. For the radial part, the Leguerre polynomials: R(r) = L (r) = e’

Ner

30



Getting Inspired by Atoms (ll)

How to Represent an Electronic Wavefunction in a Practical Way

 The wave function of an electron is called orbital; depends only on the coordinates of 1 electron.

Hydrogenic orbitals obtained from solving the Schrédinger equation

n | m WY, (7,6,0) Shape and size

0 Yo,o( 9, (P) e_zr
2 0 0 Y00(6,0)(2 — Zr)e ™"
1,0 Y,,(0,p)Zre "

3 0 0 Yoo(6,0)(27 — 18Zr + 2727 e 2

1 +1,0 Yi(8,0)Zr(6 — Zr)e?™

2 +2,+1,0 Y, (6,0)Z% "

F. Jensen, Introduction to Computational Chemistry, 2nd Ed.
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Getting Inspired by Atoms (lll)

How to Represent an Electronic Wavefunction in a Practical Way

» The radial part is always of the form R(r) = ke_%, Z being the atomic number

 However, in guantum mechanics quite often this integral is solved,
<R | R> — [R(V )*R(r)dr, difficult to solved with R(r) = klg—sz’

e (Gaussian functions offer a nice alternative to it:

* The product of two Gaussian functions is another Gaussian function
. fR(r) = Aeb’”z, then <R|R> = JAebrz, which is still easy to integrate

32



Getting Inspired by Atoms (IV)

Product of Gaussian Functions

. Gu(r) = (2_a)ze_“(r+RA)2, and

 Gy(r) = (%)Ze—ﬂ(r+RB)2

e G,(r)Gy(r) is another gaussian function

. G,(0)Gy(r) = Ke 7T+ Re)

.vr=a+ /R

C

a+pf

2 3
_ PRy (3> (ap)*

G, (1)

AAAAAAAAAAAAA — |




Getting Inspired by Atoms (V)

How to Represent an Electronic Wavefunction in a Practical Way

e |t is therefore most common to represent the radial part as an expansion of
Gaussian functions to fit the e ™% exponential:

R(r) = Z czie—l’i’"2

» The coefficients a; and b, are optimised for each atom to reproduce their
properties

» The set of Gaussians is call basis set, as form a basis on which R(7) is
spanned

34



Getting Inspired by Atoms (VI)
How to Represent an Electronic Wavefunction in a Practical Way

3\ 1/2
¢ (Slater) = (Eﬁ_) e %" = 0.7790 e—l.24r

 The more number of basis =

. . _ . 4 e,—arr2 - ",—0.4166:'2
functions, the more accurate PR - ( n) Mk

20 20 2

#(STO-3G) 04446( )3/4 —ar’ 05353( )3/4 01543(2“)3/4 ’
_ | -3G) = 0. - e % +0. _— e % +0. - " e
« The more number of basis . ' :

functions, the more <GA | GB>
. P— STO'SG
iIntegrals to solve 05

— 0.0835 ¢ 01689 1 2678 ¢=0-6239r" | (2769 ¢~3:4253r
Slater

* EXperience show that 6
(Gaussians are accurate enough

r, A
Comparison of Slater, STO-1G and STO-3G functions for Hydrogen, taken from

E. Lewars, Computational Chemistry, 1st Ed., Kuwler, New York, p. 213
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From Atoms to Molecules (l)

* |n the same way that molecules are made by
atoms, we can build a molecular wave function
from atomic orbitals:

 Wave function, 3N-dimensional function, N
being the number of atoms

 QOrbital, 3-dimensional function

* [he orbital ansatz reduces the dimensionality
of the equations to solve

36



From Atoms to Molecules (ll)

» We first define a molecular orbital ¢;, a function
describing an electron in a molecule

* As molecules are made by atoms, a molecular orbital can
be expressed as linear combination of atomic orbitals:

P; = Z Ca,i)(a

a

* Considering the electrons as non interacting, a molecular
wave function can be express as product of molecular
orbitals:

O(r) = He(r;

37



From Atoms to Molecules (lil)

 And we plug this molecular wave function into the Schrodinger equation

2
Z 226 ;,,2 T Z ; %}\:e T Z Zi— O(r; R) = ED(r; R)

2
i i j>i Y

* Remember that we said “assuming non-interacting electrons”?

62

This is contradictory as the term — measures the interaction of electron 1 with electron ;.

7

* \We had said that this term makes the equation impossible to solve.

38



From Atoms to Molecules (IV)

62

Indeed, the — Is approximated so that, within the framework of non

i

Interacting particles, the interaction between them can still be described as
precise as possible

 The two main approximations with this ansatz are

Hartree-Fock Density Functional Theory

* These two are different ways of describing the electronic repulsion within the
framework of non-interacting electrons

39



Recapping

Practical Guide for Computing Wavefunctions of Electrons

1. We start with the electronic Schrodinger equation:

ho 0 | gne e o |
Z 2me al”z | Z ; T T Z Z ;,._ (I)e(l‘, R) o Eeq)e(ra R)

2
i > Y

l

2
2. We use a set of Gaussian functions to represent atomic orbitals, namely basis set: ¢k(r) = Z aie_bn”

n

3. We linearly combine these atomic orbitals to make the molecular orbitals @,(r) = Z ¢ (1)
k

4. We make an assumption to describe the electronic repulsion term Z Z —

2
Vi)

i j>i

5. We solve the resulting equation and obtain the molecular wavefunction, CI)e(r), and its energy, Ee

40



The Potential Energy Surface



Born-Oppenheimer Approximation
Using Physics to Simplify

* With the Born-Oppenheimer Approximation we don’t treat the electrons as

From particles, e- To Potential, V(r) & nuclear forces, F(r) = V V(r)

42



The Potential Energy Surface

e Rememberl!, the outcome of the electronic

Schrodinger Equation is the potential in which 5
the nuclei are embedded (Born-Oppenheimer OO
Approximation)

o
o
|

* The solution is also called Potential Energy
(Hyper)Surface (PES)

o
w

o
N

* For a diatomic molecule, it depends only on 1
coordinate: the bond distance between the
nuclel

Relative Energy (eV)

o
b=

* |t follows the form of a Morse potential: 0.0 -

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

2
V(r) — De (1 — e—a(r—req)) Bond Distance (A)

43



The Harmonic Approach (l)

Getting Molecular Frequencies

* Around the minimum, the potential can be
approximated to a parabola

* |t’s equivalent to making a second order Taylor
expansion around the minimum

* There’s another system in physics with a quadratic
potential: the Harmonic Oscillator

Q) omym,

s U =
2 my + ni,

Vix) =k (x — xo)z; k

» kis the oscillator strength, v is the frequency, u is
the reduced mass and 1, and m, atomic masses.

44

5.0

2.3

0.0 -

I
N
w

I
&
o

Relative Energy (eV)
|
~J
%)

—12.5:-

=130

—10.0 -

\‘

]

SN——

1.0

1.2

1.4 1.6 1.8 2.0
Bond Distance (angstroms)

2.2

2.4




The Harmonic Approach (ll)

Getting Molecular Frequencies

 Therefore, around the minimum, a molecule
can be approximated as a collection of

harmonic oscillators of k;

» k, the force constant, measures the stiffness of
the molecule towards that vibration.

 k is obtained by the second derivative of the
second derivative of the energy

* |ndeed, diagonialisation of the Hessian renders
the force constants of all the vibration modes

45

[0°E/0g1q1 8%E/dqiq2 ... 3*E/dqi149
0°E/dq2q) °E/dqaq2 ... 3*E/3qago

H:[
0°E[dq9q1 02E[/dqoqy ... 0%E[dqoq9_

g 912 -+ quo)[ ki O -+ 0O
Q21 4922 -+ g9 0 %k -+ 0

P-l
g9 992 -+ (199J 0 0 - ko
P k

Diagonalisation of the Hessian matrix of a triatomic

molecule, H = PkP~!. Each atom is described by 3
Cartesian coordinates, hence the Hessian depends on 9
coordinates, gi-9. Taken from E. Lewars, Computational

Chemistry, 1st Ed., Kuwler, New York, p. 31.



The Harmonic Approach (lil)

Internal Coordinates

* |n the the Jupyter Notebook we’ve seen that:

* 6 (or 5) eigenvalues of the Hessian matrix are 0, corresponding to
rotation and translation

 Only molecular vibrations change V(r)

* As eigenvectors are orthogonal, vibrations constitute a new basis set
to represent a molecule

* Vibrations as coordinates are powerful: define the direction where V(r)
really changes

 We did that unconsciously when representing N2 just with the bond
distance

e These are also known as internal coordinates or Z-matrix

46




The Harmonic Approach (IV)

Infrared Spectra

* Molecular Vibrations constitute the a6 = 3) 6 § s
n-6 - N Ny O\
Infrared (IR) spectrum of the sogreesofvbraonaiossom 1" W 1
molecule

 Position of the band: v;

V (Bending)

0
Intensity of the band: Ii = a—'u uis |
Vi

the molecular dipole moment | /'

4000 ' 3000 ' 2000 ) 1000
1
Wavenumber / cm

1640 cm |

Absorbance

Taken from https://chemistry.stackexchange.com/questions/
162316/why-is-this-graph-of-vibration-spectroscopy-like-this
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The Harmonic Approach (V)

Zero Point Energy

* Heisenberg's Uncertainty Principle: “there is

Inherent uncertainty in the act of measuring a " 5.0

position and velocity simultaneously”: AxAp > > .
* Temperature is the measure of the movement of S 5o

the atoms.

] @ =10.0" \

* |f in OK the molelcule would reach the bottom of

the well, x = 0 and p = 0, what’s not allowed \?

1.'0 1.'2 l.'4 1.'6 1.'8 2.l0 2.l2 2.l4

* Molecules never reach the bottom of the potential BN Disnce: gty

= they're always moving

48



The Harmonic Approach (VI)

Zero Point Energy

* Through the partition function, each vibrational mode
contributes to the internal energy of the molecule;

ok
o

N
w
|

3IN—-6(3) 1
. Evib — Z (ni_l_E) hvi

=1

o
o

I
N
8

 n;is the vibrational quantum number, the vibrational state of
the molecule.

I
e
o

Relative Energy (eV)
|
~J
%)

[ 3N=6(5 a5
AtT=0K, n.=0and E ..(T=0) = — hu. ~12.5 -
. I vzb( ) N lzzl l = —

« E .. (T = 0)is known as the Zero Point Energy (ZPE), an T popeaweeommest
energy the molecule ALWAYS has, even at OK.
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From Vibrations to Thermodynamics (l)

Calculation of Real Chemistry

* The partition function makes the link between properties of a molecule and properties of a
macromolecular system.

|t therefore establish a relation to calculate the enthalpy of a system:

H — . RT

° trans o

3
. Hrot = —RT

2

WO hy. h, |

. HvibzR Z (2k | ’ ghVi/kT—l)
« H = Htmns + Hrot T Hvib

50



From Vibrations to Thermodynamics (ll)

Calculation of Real Chemistry

* Entropy can be calculated in an analogous way: * S,/

= RIng,

5 V. /22MKT 2 * And the total entropy is built:

S =—R+RIn|—
rrans = 51T N\ 2 . S=S 4S8 +S8.+S

rans T rot lec

* This is already programmed

3 # Electronic part
— results['S_elec' ]
2 results['Cv_elec']

]

71- 87Z_2kT results['E_elec'

3 # Translational part. See also https://cccbdb.nist.gov/thermo.asp for the
S — R — _|— ln I I I # partition function q_trans
I/'Ot . 1 2 3 mass_tot = mass.sum() * nist.ATOMIC_MASS
g_trans = ((2.0 * numpy.pi * mass_tot * kB * temperature / h**2)**1.5

® ; / 6 h * kB * temperature / pressure)

results['S_trans' ] (R_LEh * (2.5 + numpy.log(gq_trans)), 'Eh/K")
results['Cv_trans'] (1.5 * R_LEh, 'Eh/K")

results['Cp_trans'] (2.5 * R_LEh, 'Eh/K")
]
]

(R_Eh * numpy.log(mol.multiplicity), 'Eh/K')
results['Cp_elec'] (8, "Eh/K")
results['H_elec' ] (E@, 'Eh")

1 | I |
I

results['E_trans' (1.5 * R_LEh * temperature, 'Eh')
results['H_trans' (2.5 * R_LEh * temperature, 'Eh")

3N 6 5 # Rotational part
hD 1 rot_const = rotation_const(mass, atom_coords, 'GHz')
[ ]

th‘ results['rot_const'] = (rot_const, 'GHz')

® VZb : ' h /kT 1 1 e sym_number = rotational_symmetry_number(mol)
k Z e Dl — 1 results['sym_number'] = (sym_number, '")
l # partition function q_rot (https://cccbdb.nist.gov/thermo.asp)
if rotor_type == 'ATOM':
results['S_rot' ]

results['Cv_rot']
results['E_rot' ]

rotor_type = _get_rotor_type(rot_const)

(6, 'Eh/K")
results['Cp_rot']
results['H_rot' ]

(6, 'Eh/K')
(6, 'Eh')
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From Vibrations to Thermodynamics (lll)

Calculation of Real Chemistry

« And with H and §, calculation of Gibb’s free energy is possible:
c G=H-TS
» And with that, you can calculate the AG of a reaction:

. AG — — G
_) o—{ ©

reaction — “~product reactant
52
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Recapping

Calculating Thermodynamics of Molecules and Reactions

* Around the minimum, the Potential Energy Surface can be approximated by a
harmonic (quadratic) potential

* Under this harmonic approximation, the molecular degrees of freedom can be
represented as a collection of harmonic oscillators

* The diagonalisation of the Hessian of the potential renders the molecular vibrations

e The vibrations constitute a new set of coordinates, the internal coordinates, more
convenient to represent the molecule

* With the vibrations, the partition function is built and, hence, the thermodynamics
of the molecule, and its reactions, can be calculated.
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Optimising the Molecular Geometry (l)

Complexity of Potential Energy Surface

e So far, only molecules at the minimum of the PES
considered

A

Maximum

e How be sure that the molecule is at the minimun

Maximum

 PES are indeed very complex Saddle Saddle

point point

Energy

e Minima

* Saddle points Minimum
Perpendicular »
e Maxima /Coor;inates Minimum

Reaction coordinate

* We need to make sure where the molecule as: Different Stationary Points in a multidimensional
OPTIMISE :

energy surface. Taken form F. Jensen, Introduction
to Computational Chemistry, 2nd Ed., p 380
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Optimising the Molecular Geometry (ll)

Complexity of Potential Energy Surface

%\

Possible stationary points for 1-
propen-2-ol (left). Computed PES
along the HCC=C dihedral and
H-O-C=C dihedral coordinates.
Taken from E. Lewars,
Computational Chemistry, 1st
Ed., Kuwler, New York, p. 24.



Optimising the Molecular Geometry (lll)

Chemical Meaning of Stationary Points

» Stationary points fulfil that V V(x) = 0 Saddle Point

* Not only minima are interesting in chemistry

 Minima are stable species:

 Reactants and products

Energy

e Reaction intermediates

 Saddle points: Transition States of reactions

Reaction Coordinate

» Maxima in one direction: reaction coordinate &

Do _ o Energy Profile along Reaction Coordinate
 Minimum in all others, minimum energy path (MEP)
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Optimising the Molecular Geometry (IV)

Chemical Meaning of Stationary Points

* Finding the stationary points we can determine the most
important parameters of a chemical reaction

* Reaction Energy:

_ z: _ 2: s A ™ Activation
AI{R — Hproducts Hreactants . A

* Activation Energy

AG*=Grs— ) G

reactants

* Reaction rate / probability:

| — KkBTe ARC;#
h

Reaction Coordinate
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Optimising a General Function

0
. Stationary points fulfil ~ fx)=0
}g[ 2 0.25 A

* Finding the minima of an analytical function is easy. &

d
/ S—

. f(x) = a(x + b)*; — = 2a(x + b); x,

e How calculate the minimum of a numerical
function?

» V(x) depends on 3Natoms— 6 variables!!

 Taylor expansion of the function, V(X)
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1.0

1.2 1.4 1.6 1.8 2.0 2.2
Bond Distance (A)

0.9,-149.83256851294857
0.916,-149.88230098440067
0.932,-149.92652818848006
0.9480000000000001,-149.96578509149447
0.964,-150.00055606052774
0.98,-150.0312802996513

0.996,-150.05835595863977
1.012,-150.0821435033207
1.028,-150.10296931406825
1.044,-150.1211288942191
1.06,-150.13688972421446
1.076,-150.15049369493423
1.092,-150.16215939406862
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Simplex Method

Oth-order Method

* The easiest way it so asume a Oth-order expansion,
V(X) | Xy V(xg)

e Constructs an irregular polyhedron with just the
value of the function.

e Allows contractions and expansions to reach the
minimum.

e (© Only the value of V(X() needed

° Q\) Not SO efﬁcient W|th many VariableS aS iS the Taken from Wikipedia: https://en.wikipedia.org/
) wiki/Simplex algorithm
case for molecular PES.
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Steepest Descent (l)
1st-Order Method

. 1st-order approximation, V(Xx) ‘x() ~ V(Xg) + g7 (X — Xy)

* (Gradient shows the direction of steepest ascent.

» Following opposite direction will lead to minimum <<
<>
* Xk =Xg 1~ Vi

e Line search to find the Optimum value for o Steepest descent minimisation. Taken form F.

Jensen, Introduction to Computational Chemistry,

_ _ 2nd Ed., p 384
e /Zig-zag search: next step moves orthogonal to previous
one
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Steepest Descent (Il)
1st-Order Method

* Accurate line search is needed to guarantee convergence to minimum

* An option is the Armijo rule (from Wolfe conditions):

X+ apy) < f(x) +c 105kP1{ Vf(X;)
» a lIs the parameter to optimise, ¢; is a constant between 0 and 1 and p is the search direction

 Usually line search methods are approximate, and the algorithm ends up oscillating around the minimum

e (v Bring system close to the minimum
(= Can oscillate around minimum X
o
e = Can only locate minima
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Conjugated Gradients (l)
1st-Order Method

Overcomes deficiencies of steepest descent: “undoing” of previous | | ‘
step as going in is perpendicular direction. |

Xk

a can be estimated as before

A popula;way to estimate [ is the Polak-Ribiere relation:
PR 8 ° (gz o gi—l)

%

= Xk—1 —“(Vk+ﬁvk—1)

If surface is quadratic, convergence assured in Nvar steps

giT_1 * 8i—1
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\\‘ \\\\ y ‘ A - -_,---"'/ | y, ! //’

\ \‘ \ \_\‘ 5 V. / J

\‘\.\\ '\.\ \ G AR / /

e S

N\ N\ - Steepest Descent
\,\‘ X\\ \\\“ ] ]

\ \ 0 . Conjugated Gradient
AY Y Y ~ e Vi

Comparison between Steepest Descent and
Conjugated Gradient algorithms. The latter converges
in n=2 steep. Taken from: https://en.wikipedia.org/
wiki/Conjugate gradient method



https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Conjugate_gradient_method

Conjugated Gradients (ll)
1st-Order Method

 CG works best for near quadratic surface:

e (& The PES is near quadratic around minima

o () Better performance than Steepest Descent

» @ In real applications, [/ needs to be reset to 0 after several steps

e (v Can only locate minima
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Newton-Raphson Methods (l)
2nd-Order Methods

* Newton-Raphson methods go beyond by approximation f(x)
the function to a 2nd order Taylor expansion:

1 nitial Guess
V(x) ‘Xo = V(xp) + gg (X — Xq) + E(X — X,)" Hy(x — X)) o

* The step can be derived by requiringg = 0 =

’L - "--4 ol o= «v.o
Aler nrst Kerauon

(X —X() = — H'g

* NR finds the solution of a quadratic function in a single
step

Exact
ool

* The real PES V(X) contains terms beyond second order,

NR leads to an iterative approach to stationary point lterative optimisation of f(x) with the NR algorithm.
Taken from https://www.geeksforgeeks.org/
program-for-newton-raphson-method/
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Newton-Raphson Methods (ll)
2nd-Order Methods

100

* The NR method optimises to the nearest S0 |
stationary point whatever that is: minimum, saddle
point of maximum

g -2l
» & Locate Transition States! oo b
* The size of the step should be limited, otherwise 150 -
the algorithm can shoot the step far away from the P I A T T . I
solution (trust radius): 4 -3 -2 41 0 1 2 3 4 5 B

* The closer to the stationary point, the smaller

the step. Converged of NR algorithm with different starting
points. Taken from https://www.cup.uni-
muenchen.de/ch/compchem/geom/nr.html

e @ Computing H can take A LOT of time
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Pseudo Newton-Raphson Methods (l)
1st or 2nd-Order Methods

« Main drawback of NR Algorithm: calculation of H in each optimisation step.

» What if it could be just updated?: H,. ; = H, + AH

» Only the initial H, needs be calculated

* For minimisatior}l the BFGS (Broyden-Fletcher—Goldfarb—Shanno) algorithm is preferred:
Ag'Ag HAxAx'H
AHpgrs =

Agl/Ax  Ax’HAX

« BFGS only allows for positive eigenvalues of H = not possible to optimise Transitions States:

| Ax'Ax HAgAx'H
, For that, the Powell update is used: AHp_,.;; = AxTA AoT HA
x'Ag g 8
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Pseudo Newton-Raphson Methods (l)
1st or 2nd-Order Methods

* The success of the optimisation depends on the
initial HO 100 —

>0

 For minima: almost anything works, even .
:[]h) — ]_ ; !

-20

16y

 For Transition States and accurate Hessian is

needed. 1o

-150

« & Pseudo NR need more iterations than true NR el

& Pseudo NR find the stationary point usually
much faster than true NR = preferred method
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Recapping (I)

Finding Chemical Structures and Reaction Parameters

 The PES has a complex shape and their stationary points
correspond to chemical structures:

 Minima: reactants, products and reaction intermediates

* Reaction energy and activation barrier can be calculated 3

. " / Activation
 Saddle points: transition states , \

: . _ ) : o ..... S
through the difference in energy of: S | Remction & - ®
Energy i .y
° AI{R — Z products Z reactants |
Kk T AGH Reaction Coordinate
GTS Z reactants’ e ~

h
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Recapping (ll)

Finding Chemical Structures and Reaction Parameters

* Finding stationary points in the PES is key to understand its chemistry:
 Pseudo Newton Raphsom algorithms are the method of choice

* A good guess of the geometry helps to find the stationary point, specially
for Transition States

» For Transitions States the initial Hessian H, needs to be calculated
accurately.
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Computational Chemistry at
Work




lllustrating the Concepts (l)

Prediction of Molecular Geometries

. Start with H20, exp: R,,;; = 0.9578 A; 6,,,,;; = 104.49°
Density Functional Theory (DFT)

Hartree-Fock (HF)

H,0 geometry as a function of basis set at the HF level of theory

Basis Ron (A) Ouon (°) Basis Ron (A) Ouon (°)

pc-0 0.9619 113.08
cc-pVDZ 0.9463 104.61 pc-1 0.9464 105.59
cc-pVTZ 0.9406 106.00 pc-2 0.9392 106.41
cc-pVQZ 0.9396 106.22 pc-3 0.9396 106.34
cc-pVSZ 0.9396 106.33 pc-4 0.9396 106.34
cc-pV6Z 0.9396 106.33

/1

Taken form F. Jensen, Introduction to Computational Chemistry, 2nd Ed., p 351-353

Table 11.5 H,0 bond distances (A) as a function of basis set with
various DFT functionals

Basis LSDA BLYP PBE HCTH B3LYP PBEO
pc-0 09878 0.9962 0.9936 0.9854 0.9841  0.9806
pc-1 09764 0.9791 09763 0.9656  0.9683  0.9645
pc-2 09696 09706 0.9689 0.9589 0.9604 0.9574
pc-3 09700 0.9704 09689 0.9589  0.9604 0.9576
pc-4 09700 09704 09689 09590 0.9604 0.9576

Table 11.6 H,0 bond angles (°) as a function of basis set with
various DFT functionals

Basis LSDA BLYP PBE HCTH B3LYP PBEO
pc-0 111.82 109.27 109.40 10943  110.72  110.93
pc-1 104.15 103.24 103.09 10322 104.06 103.99
pc-2 105.10 104.56 104.27 10452 105.19 104.98
pc-3 10498 104.52 10421 10444  105.13 104.90
pc-4 10498 104.52 10421 10442  105.13 104.90




lllustrating the Concepts (i)

Prediction of Molecular Geometries

Table 7.2. B3LYP/6-31G*, pBP/DN*, MP2(FC)/6-31G* and experimental dihedral angles
(degrees). In each case the starting structure was an AM|1 geometry

Dihedral Angles

Molecule B3LY P pBP M P2 Exp. Errors

HOOH 119.3 116.4 121.3  119.12 0.3/-2.7/2.2

FOOF 87.2 89.2 85.8 87.5° -0.3/1.7/-1.7

FCH,CH,F 70.0 69.2 69.0  73° ~3.0/-4/-4

(FCCF)

FCH,CH,OH

(FCCO) 63.3 64.0 60.1  64.0° —-0.7/0.0/-3.9

(HOCC) 62.7 62.6 54.1 54.6° 8.1/8.0/—0.5

CICH,CH,OH

(CICCO) 61.2 63.1 65.0 63.2° -2.0/-0.1/1.8

(HOCO) 60.0 62.5 64.3  58.4° 1.6/4.1/5.9

CICH,CH,F 66.7 69.6 659  68° —1.3/1.6/-2.1

(CICCF)

HSSH 91.0 90.0 90.4  90.6% 0.4/—-0.6/—0.2

FSSF 89.1 88.6 88.9 87.9° 1.2/0.7/1.0
Deviations:

5+, 5—-/5+,4—, one 0/4+, 6—

mean of 10:
1.9/2.4/2.3

B3LYP/6-31G* 1.157
0.969— 1.071
0.883— pBP/DN* 1.087 1.162
0.969 — MP2(FC)/6-31G" 1089 1177

(1.1583)
O e LS8 LT G,
H 104.6 czv

103.9 1.096
(104.5 1.109
) H 1.082 1.019
1., \(1-099) 1.032
1.456 1.104 "'y 1.018
H 1.480 C 1.118 1.465 =Z\{1.010)
\ 1.469 1.100 1470 H H
0.973 0(1452) (1.099)H 1465 C
0.991 (1.471)
115.7
0.976 116.1
(0.965) e H 116.4
e (113.9)
(100.0)
107.7 1.216
107.9 1.225 1.520

H 1.114 (108.0)

1.097 \
H,, \(1.094) 0.969
1003 0 0.983
1.108 1419 ~ 0870 Cg
] | 1431 0969
: 1.425
106.7
joe s (1.421)
106.3
(107.2)

112.9
; 112.3
H (1124

1.333 H 1.503
1.341 1.499
1.338 1.499

Taken from E. Lewars, Computational Chemistry, 1st Ed., Kuwler, New York, p. 401-404
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lllustrating the Concepts (lil)

Dipole Moment

Table 11.12 H,0 dipole moment (debye) as a function of DFT func- Table 11.21 Dipole moment (debye) for CO; the experimental value is 0.122 debye
tional and basis set; the experimental value is 1.847 debye

Method aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pVS5Z
Basis LSDA BLYP PBE HCTH B3LYP PBEO
HF ~0.259 ~0.266 ~0.265 ~0.264
aug-pc-0 2721 2602 2618 2.605  2.655 2675 MP2 0.296 0.280 0.275 0.273
aug-pc-1 1.823 1762 1760 1.758  1.821 1.826 MP3 0.076 0.047 0.036 0.032
aug-pc-2 1.837 1781 1779 1782  1.837 1.842 MP4 0.220 0.222 0.216 0.214
aug-pc3 1.834 1778 1774 1779 1833 1837 CGSD 0.097 0.070 0.059 0.055
aug-pc-4 1833 1778 1774 1777 1833 1836 COSD(D) 0.141 0.127 0.118 0.115
CISD 0.050 0.023 0.011 0.008
LSDA 0.232 0.226 0.229 0.229
BLYP 0.187 0.184 0.185 0.185
PBE 0.229 0.224 0.224 0.224
HCTH 0.194 0.181 0.175 0.179
B3LYP 0.091 0.086 0.087 0.088
PBEO 0.107 0.101 0.102 0.102

/3

Taken form F. Jensen, Introduction to Computational Chemistry, 2nd Ed., p 358, p. 372



lllustrating the Concepts (IV)

Vibrational Frequencies

Table 11.17 H,0 lowest harmonic frequency (cm™) as a function
of basis set with various DFT functionals; the experimental value is
1649 cm™

Basis LSDA BLYP PBE HCTH B3LYP PBEO

Ky . _1 .
Table 11.13 H,0 HF harmonic frequencies (cm™) as a function of be-0 474 1535 1539 1567 1565 1578

basis set pc-l 1548 1597 1596 1627 1628 1635
: § pc-2 1544 1595 1590 1617 1625 1630
Basis vy Vs V3 pc-3 1549 1597 1594 1621 1629 1635
pc-4 1550 1598 1594 1621 1629 1635

pc-0 1690 3966 4145

pc-1 1751 4120 4233
pC-2 1744 4138 4239 Table 11.18 H,0 second lowest harmonic frequency (cm™) as a
pC-3 1748 4131 4239 f/l;TLcl:’eci?Sn 3081’:J.l;acsrins_lset with various DFT functionals; the experimental
pc—4 1748 4130 4251 Basis LSDA BLYP PBE HCTH B3LYP PBEO

Experimental 1649 3832 3943

pc0 3588 3453 3510 3574 3620 3691
pc-l 3690 3611 3664 3760 3767 3835
Taken form F. Jensen, Introduction to Computational Chemistry, 2nd Ed., p 351-353 pc2 3730 3669 3710 3796 3811 3870
pc-3 3718 3667 3707 3794 3807 3865
pc-4 3718 3666 3706 3794 3807 3865
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lllustrating the Concepts (V)

Vibrational Frequencies - IR Spectrum

ACETONE
80
i
60 -
‘o -
20 - *
o Experiment U
4000 :!')oo 2:)00 1500
0
| Lo
2047
o 2971 —
Experiment,
- idealized 1716| 1368 1217
HsC CHs

Figure 7.4, Experimental (gas phase) and DFT (B3LYP/6-31G* and BP86/6-31G*) and
MP2(FC)/6-31G™* calculated infrared spectra of acetone. The DFT spectra are based on the
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data in Table 7.6; the MP2 spectrum is that shown in Fig. 5.33.
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Figure 7.5. Experimental (gas phase) and DFT (B3LYP/6-31G* and BP86/6-31G*) and
MP2(FC)/6-31G* calculated infrared spectra of benzene. The DFT spectra are based on the

!
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data in Table 7.6; the MP2 spectrum is that shown in Fig. 5.34.
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lllustrating the Concepts (V)

Reaction Energies

b)
- 6.9 6.9 6.8
: reaction energies
6.3 6.4
6
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Resources

To Perform Calculations:

L

> <

——

ORCA

Flexible, good for education
Very performant, specially for GPUs
Easy to customise

Requires a higher know-how
Python skills required
Not so well documented

Flexible, good for education
Very performant, specially for GPUs
Easy to customise

Requires a higher know-how
Python skills required
Not so well documented

Very intuitive and easy to use
No programming skills required
Many types of calculations work out of the box
Very performant
Good documentation

Out of the box, not possible to do what's not
implemented
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https://github.com/pyscf/pyscf
https://psicode.org
https://orcaforum.kofo.mpg.de/app.php/portal

Resources

To Create Coordinates, Inputs and Visualize results

@ D

Run from a Jupiter Notebook Requires a higher know-how

NGLViwer Casy to install Python skills required
y Badly documented
C Can be a bit buggy
Avogadro very intuitive and easy to use Restricted with the type of graphics generated,
Supports most of more common formats . .
postporcessing might be needed
SuppOrs Most of More common formats Sometimes operation is not so straight forward
JMol PP Restricted with the type of graphics generated,

Well documented postporcessing might be needed

Supports most of more common formats
Pymol Well documented Python skills required
Very flexible, you can do many visualisation types

High quality graphics
VMD Well documented and large community support Programming skills required, mainly TCL
Very flexible, you can do many visualisation types
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