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INTRODUCTION

➢Rationale of Solving Differential Equations

➢Approximate Techniques such as ADM (Faiz et al.

,2022), VIM (Alawad et al.,2013), DTM (Al-Ahmad

et al.,2020)

➢Statement of the problem.

➢Justification of the study
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THEORETICAL FRAMEWORK

Laplace transform of a function f(t)  is defined by Laplace 1782 as

( )( ) ( ) ( )( ) )1(,0,
0

= 


− sRdttfetfL st

where;

F(s)=Laplace transform of f(t)

s= complex number

t= real number>=0 

and

the function f(t) is a piece-wise continuous and of exponential order 

(Mohmed et al., 2021)
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THEORETICAL FRAMEWORK

( )( ) ( ) ( )2,,0, = txtxuN
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( ) ( ) ( )  ( )   )4(;;;1 0 stxNshtustLs  =−−

The  zero-order deformation equation was constructed by Liao (2004)

consider the following differential equation 

The basic ideal of Homotopy Analysis Method  was introduced by Saed (2020)
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THEORETICAL FRAMEWORK

Sawi transform of a function f(t) as (Higazy et al., 2020) 
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Riemann-Liouville fractional order       integral operator
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Where          is      integral.(Jamshed et al.,2022; Yuan et al.,2023)I 
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REVIEW OF LITERATURE (THEORETICAL FRAMEWORK) 
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( Lei and Jian, 2018; Wafa et al., 2022)
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ESTABLISHMENT OF SOME PROPERTIES OF SAWI 

TRANSFORM

Theorem 1

If        is a piecewise continuous function of an exponential order and 

Riemann-Liouville fractional integral of order     of f(t) is given as           

then, the Sawi transform of Riemann-Liouville fractional order integral is 

defined as
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LR .

0

( )( ) ( ) ( )80

. 
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ESTABLISHMENT OF SOME PROPERTIES OF SAWI 

TRANSFORM CONT’D
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Theorem 2

If f(t) is a piecewise continous function of an exponential order and 

Caputo fractional derivative is given then, the Sawi transform of 

Caputo fractional order derivative is given as:

ESTABLISHMENT OF SOME PROPERTIES OF SAWI TRANSFORM 

CONT’D
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ESTABLISHMENT OF SOME PROPERTIES OF MOHAND’ 

AND SAWI’S TRANSFORMS CONT’D
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ESTABLISHMENT OF SOME PROPERTIES OF MOHAND’ 

AND SAWI’S TRANSFORMS CONT’D
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This end the proof.
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PROPOSED SCHEME OF SHAM FOR SOLVING FRACTIONAL ORDER

DIFFERENTIAL EQUATION OF CAPUTO TYPE

Consider the fractional order differential equation of Caputo type in an 

operator form as

( )( ) ( )( ) ( )( ) ( ) ( )231,,,,, jjtxgtxyFtxyRtxyDt −=++ 

( )( ) ( ) ( )( ) ( )( ) ( )240,,,, =−++ txgtxFytxRyStxyDS t



Simplifying eqn. (24) and using Sawi transform of caputo fractional 

order derivative property to obtain 
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PROPOSED METHODOLOGY CONT’D

Isolating   in eqn. (25) and using                   ,gives( )wF ( ) ( )wxywY n ,=
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PROPOSED METHODOLOGY CONT’D

Simplifying Eqn. (28) gives
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initial approximation is obtained from Eqn. (29) as 
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Applying Sawi inverse on Eqn. (29), leads to 
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(1) Consider nonlinear fractional order Brusselator model
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Numerical Applications 

(Faiz et al., 2022)
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(2) Consider nonlinear fractional order Brusselator model

Numerical Applications Cont’d

(Faiz et al., 2022)
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Table 1a. Comparison of error of SHAM and LADM with the exact, for x=1=y, at 

different values of t at ψ=1 of p(x,y,t) for  Equation (32) 

t  SHAM LADM (Faiz et al.,2022) 

0.1 0.0000027847 0.0000056040 

0.2 0.0000220106 0.0000445589 

0.3 0.0000734128 0.0001494809 

0.4 0.0001720181 0.0003522209 

0.5 0.0003322108 0.0006839010 

0.6 0.0005677973 0.0011749511 

0.7 0.00089206811 0.00185514134 

0.8 0.00131785958 0.00275361562 

0.9 0.00185761345 0.00389892128 

1.0 0.00252343554 0.00531903845 

MAE 0.000776121098 0.00162374335 
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Table 1b. Comparison of error of SHAM and LADM with the exact, for x=1=y, at 

different values of t at ψ =1 of q(x,y,t) for  Equation (32) 

t SHAM LADM(Faiz et al.,2022) 

0.1 0.000001943 0.000007582 

0.2 0.000031414 0.000076526 

0.3 0.000160658 0.000312910 

0.4 0.000512983 0.000873877 

0.5 0.001265375 0.001970246 

0.6 0.002651249 0.003869267 

0.7 0.004963340 0.006897510 

0.8 0.008556750 0.011443900 

0.9 0.013852160 0.017962970 

1.0 0.021339130 0.026978100 

MAE 0.0053335002 0.0070392888 

 



RESULTS AND DISCUSSION CONT’D

5 June 2024 19

Table 1c.    SHAM of p(x,y,t) at x=1 and y=1 for different values of t at  different 

values of ψ forEquation (32)  

t ψ =0.7 ψ =0.8 ψ =0.9  ψ =1 

0.1 0.1215606283 0.1244150615 0.1267976259 0.1287376883 

0.2 0.1140583819 0.1170891746 0.1199203966 0.1224784389 

0.3 0.1083227223 0.1110531889 0.1138383638 0.1165575706 

0.4 0.1036740549 0.1058928949  0.1083705797 0.1109751765 

0.5 0.09981401855 0.1014158879 0.1034284350 0.1057314354 

0.6 0.09657496242 0.09750952672 0.09895804192 0.1008266410 

0.7 0.09384961828 0.09409934832 0.09492272196 0.09626123033 

0.8 0.09156351517 0.09113225071 0.09129573140 0.09203581287 

0.9 0.08966195166 0.08856835130 0.08805666516 0.08815119995 

1.0 0.08810304998 0.08637655163 0.08518946440 0.08460843416 
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Table 1d.  SHAM of  q(x,y,t) at  x=1 and y=1 for  different values of t at ψ =0.7, 0.8, 0.9 and 

1 for Equation (32)  

t ψ =0.7 ψ =0.8 ψ =0.9  ψ =1 

0.1 8.262811881 8.051411450 7.890562004 7.767899163 

0.2 8.877266883 8.588470154 8.355155038 8.166138499 

0.3 9.448068854 9.108300777 8.823611425 8.584697739 

0.4 10.00258420 9.627042637 9.303347521 9.024500516 

0.5 10.55174673 10.15151938 9.797885999 9.486470461 

0.6 11.10122620 10.68546443 10.30940649 9.971531206 

0.7 11.65439739 11.23122970 10.83947027 10.48060638 

0.8 12.21345241 11.79043987 11.38930440 11.01461963 

0.9 12.77990439 12.36429361 11.95993518 11.57449456 

1.0 13.35484584 12.95372067 12.55225869 12.16115483 
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Figure 1a: Solution of Exact and SHAM of p(x,y,t) at t=0,ψ=1 for Equation (32)

SHAM

Exact
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Figure 1b: Solution of Exact and SHAM of p(x,y,t) at t=5, ψ=1 for Equation (32).

SHAM Exact
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Figure 1c: Solution of Exact and SHAM of p(x,y,t) at t=10, ψ=1 for Equation (32)

SHAM Exact
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Figure 1d:Solution of Exact and SHAM of q(x,y,t) at t=0, =1 for  Equation (32) 

ExactSHAM
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Figure 1e: Solution of Exact and SHAM of q(x,y,t) at t=5, ψ=1 for  Equation (32)

Exact
SHAM
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Figure 1f: Solution of SHAM  and Exact of q(x,y,t) at t=10, ψ=1 for  Equation (32)

SHAM
Exact
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RESULTS AND DISCUSSION CONT’D

Table 2a. Comparison of SHAM, LADM for x=1=y, at different values of t at ψ=1 of p 

(x,y,t) for Equation (33). 

t SHAM LADM (Faiz et al., 2022) 

0.1 1.121250000 1.121250000 

0.2 1.285000000 1.285000000 

0.3 1.446250000 1.446250000 

0.4 1.740000000 1.740000000 

0.5 2.031250000 2.031250000 

0.6 2.365000000 2.365000000 

0.7 2.741250000 2.741250000 

0.8 3.160000000 3.160000000 

0.9 3.621250000 3.216250000 

1.0 4.125000000 4.125000000 
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RESULTS AND DISCUSSION CONT’D

Table 2b. Comparison of SHAM and LADM for x=1=y, at different values of t at ψ=1 of 

q (x,y,t) for Equation (33). 

t SHAM LADM (Faiz et al., 2022) 

0.1 0.9762500000 0.9762500000 

0.2 0.9050000000 0.9050000000 

0.3 0.7862500000 0.7862500000 

0.4 0.6200000000 0.6200000000 

0.5 0.4062500000 1.906250000 

0.6 0.1450000000 0.1450000000 

0.7 -0.163750000 

 

-0.163750000 

 

0.8 -0.520000000 -0.520000000 

0.9 -0.923750000 -0.923750000 

1.0 -1.375000000 -1.375000000 
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Table 2c. SHAM of p(x,y,t) at  x=1 and y=1 for  different values of t at ψ =0.7, 

0.8, 0.9 and 1 for Equation (33)  

t ψ =0.7 ψ =0.8  ψ =0.9  ψ =1 

0.1 1.355797803 1.244839002 1.171075239 1.121250000 

0.2 1.716181507 1.522643163 1.384170723 1.285000000 

0.3 2.107927833 1.842869417 1.642108187 1.491250000 

0.4 2.528116046 2.202064400 1.942997897 1.740000000 

0.5 2.973947312 2.597323287 2.285194445 2.031250000 

0.6 3.443165331 3.026328624 2.667336293 2.365000000 

0.7 3.933952241 3.487197803 3.088282011 2.741250000 

0.8 4.444816923 3.978366383 3.547056973 3.160000000 

0.9 4.974512998 4.498508112 4.042815054 3.621250000 

1.0 5.521981058 5.046479745 4.574811308 4.125000000 
 

 

RESULTS AND DISCUSSION CONT’D
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RESULTS AND DISCUSSION CONT’D

Figure 2a: Graph of SHAM  and LADM of p(x,y,t) at t=0,ψ=1 f or Equation (33)

LADM (Faiz et al., 2022)
SHAM 
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RESULTS AND DISCUSSION CONT’D

Figure 2b: Solution of SHAM and LADM of p(x,y,t) at t=5,ψ=1 f or Equation (33) 

LADM (Faiz et al., 2022)

SHAM 
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Figure 2c:Solution of SHAM and LADM of p(x,y,t) at t=10,ψ=1 f or Equation (33)

LADM (Faiz et al., 2022)
SHAM

RESULTS AND DISCUSSION CONT’D
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Figure 2d :Solution of SHAM and LADM of q(x,y,t) at t=0,ψ=1for Equation (33)

RESULTS AND DISCUSSION CONT’D

LADM (Faiz et al., 2022)
SHAM
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Figure 2e: Solution of SHAM  and LADM of p(x,z,t) at t=5,ψ=1 f or Equation (33)

LADM (Faiz et al., 2022)
SHAM

RESULTS AND DISCUSSION CONT’D
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Figure 2f: Solution of  SHAM  and LADM of q(x,y,t) at t=10, ψ=1 f or Equation (33)

, LADM (Faiz et al., 2022)SHAM



➢ Sawi transform of the nth order derivative, Riemann Liouville fractional
order integral and Caputo properties were established by using principle
of mathematical induction, definition of Sawi transform, method of
integration by parts, definition of convolution of two functions, definition
of Caputo fractional order derivative;

➢ New schemes for solving fractional order differential equations of

Caputo types were derived by combining Sawi transform and HAM;

➢ To justify the effectiveness of the proposed schemes, some identified
problems were solved and results were compared with existing solutions;

➢ The results then revealed that schemes were reliable with wide
applicability to solve fractional order differential equations.
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CONCLUSION



CONTRIBUTIONS TO KNOWLEDGE

✓ New integral schemes for solving non integer order partial 
differential differential equations were established and applied.

✓ Sawi transform of the nth derivative of a function f(t), Riemann-
Liouville integral and fractional derivative in Caputo sense were 
established.
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