ICAWMSCS '24 May 27-31, 2024

High Performance Computing Workshop

By Prof. Clement Onime <u>onime@ictp.it</u> ICTP, Trieste, Italy

Contents

- Revision
 - Digital computers (history)
 - Basics of programming
 - Parallelism
 - What, why and how

Example of software code for basic algorithms

Overview

- Interactive classes (56%)
- hands-on sessions (44%)
 Exercises
- Self motivation (100%)
 - Identify goals & targets
 - Write down your expectations..

Books & on-line reference materials

- Books
 - An Introduction to Parallel and Vector Scientific computing by Ronald W. Shonkwiler & Lew Lefton, Cambride texts in applied mathematics, 2006
 - Parallel Programming with MPI by Peter S. Pacheco, Morgan Kaufman Publishers, 1997

On-line materials

- Stanford University CS Education Library http://cslibrary.stanford.edu/
- Lawrence Livermore National Laboratory https://computing.llnl.gov/?set=training&page=index
- Durham University
 - http://www.dur.ac.uk/resources/its/info/guides/

REVISION

Sectional Outline

- Computer hardware
- Programming languages
- Tools for programming
- Data types (integers & floats)
- Operators
- Statements
- File operations

Von Neumann Architecture

- General requirements for electronic computers (1945).
 - Main components: Memory, control unit,
 Arithmetic Logic Unit (ALU) and input/output unit
 Classically used for designing all computers/CPUs
- Proposed stored/changeable programs executed sequentially.

Who was John Von Neumann?

Class Exercise:

- Who was Von Neumann?
 Mathematician
- What are some of his notable inventions or work?

– Von Neumann architecture

What is a digital computer?

- Our starting definition is that a digital computer is a device that performs computations or calculations based on digits (numbers).
- Digital computers have four main parts:
 - Central Processing Unit (Processor)
 - Storage (memory)
 - Input
 - Output
- Before 1946 all digital computers worked internally with base 10 digits. The modern digital computers however work internally with in base 2 digits.

Block diagram of a digital computer

History of Digital computers

1645 - 1964

- Mechanical digital computers
 - Pascal's calculator (1645 1694)
 - Stepped Reckoner (1694 1851)
 - Arithmometers
 - comptometers
 - Comptographs
- Electromechanical digital computers
 - Sumlock comptometer Ltd, UK
 - Anita mark VII, VIII, 10 and 11
- Electronic
 - Sharp Corporation Japan (1964)
 - all transistor device..

Key facts Digital computers

- Factors
 - Solve challenge of performing computations
 - Reduce human errors
 - Improve speed
- Notes
 - Pascal (1645)
 - Patent first
 - Libnitz (1694)
 - Wheel technology was used for about 200 years (open source)
 - Thomas 1820
 - Patent first
 - Build design, quality, reliability, accuracy
 - provided user manual

Microprocessor Internals

Overview of Microprocessor

Exercise

- What is your motivation?
 - Chemistry:
 - Physics:
 - Engineering:

Storage sizes in Computing

Item	Size in computing	Commercial size
Kilobyte	2 ¹⁰ = 1024	$10^3 = 1000$
Megabyte	$2^{20} = 1024^2 = 1,048,576$	$10^6 = 1,000,000$
Gigabyte	$2^{30} = 1024^3 = 1,073,741,824$	$10^9 = 1,000,000,000$
Terabyte	2 ⁴⁰ = 1024 ⁴ = 1.09951162778e+12	$10^{12} = 1,000,000,000,000$
Petabyte	$2^{50} = 1024^5 = 1.12589990684 \times 10^{15}$	10 ¹⁵
Exabyte	$2^{60} = 1024^6 = 1.15292150461 \times 10^{18}$	10 ¹⁸
Yottabyte	$2^{70} = 1024^7 = 1.18059162072 \times 10^{21}$	10 ²¹
Zettabyte	$2^{80} = 1024^8 = 1.20892581961 \times 10^{24}$	10 ²⁴

Programming languages

- Native/executable computer/machine language
 Assembly code
- Human readable languages
 - Interpreted (single executable with different program file as input)
 - Perl, python or tcl
 - matlab, octave, etc
 - Compiled (transforms readable input into executable code
 - Fortran & C
 - Java is semi compiled into byte-code

Useful tools in programming

- Creating and modifying program source code
 - Editors (may include syntax highlighting checking)
- Translating source code into machine or byte code
 - Compilers (identify & highlight errors in source code)
- Tracing execution or runtime code for errors
 - Debuggers
- Integrated Development Environments
 - Combine all above tools in one interface.
- Revision Control Systems
 - subversion, git, etc

Computer Data types - Integers

- Integer
 - Whole numbers, typically signed representations
 - Char (8 bit)
 - Short (16 bit)
 - Int : 16 or 32bit
 - Long (32 bit)
 - Long long (64 bits)
 - Notes:
 - Unsigned types basically double the maximum possible positive value e.g unsigned short is 0 < x < 65536

Computer Data types - Floats

- Numbers having two parts separated by a decimal point
- Single precision (32 bit, 6 digits after decimal)
- Double precision (64 bit, 15 digits after decimal)
- Long double (80 bit, even bigger)
 - Standard is double, float(single) may be used to save memory
 - Always avoid equality tests

$$(-1)^{sign} * 2^{exponent-bias} * 1.mantissa$$

$$(-1)^{sign} * 2^{1-bias} * 0.mantissa$$
 (this avoids underflow)

$$(-1)^{sign} \left(1 + \sum_{i=1}^{23} f_{23-i} 2^{-i} \right) 2^{e-127}$$

$$(-1)^{sign} \left(1 + \sum_{i=1}^{52} f_{52-i} 2^{-i} \right) 2^{e-1023}$$

Operators

- Arithmetic: (/ * + %)
- Relational: (== != > < <= >=)
- Logical: (!! && !)
- Binary: (^ ~ & |)

What about += *= /= and -= ?

Statements

- Executable
- Non-executable
- Control
- Input/output
- Built-in functions
- Functions
- Subroutines
- Logical

• Exercise - Classify the following X = 42 break lf () fopen printf Sqrt **x** < 5 Char * memcpy() &&ļ

File operations

- Input
 - Sometimes can differentiate between text and binary files
 - Sequential or random
- Output
 - Create non existing
 - overwrite or clobber existing
 - Or append
- Fopen, printf, scanf, fgetc, fclose, fputc, ungetc