
Fluids and fluid instabilities, including turbulence, appear in a wide 
range of natural contexts as well as engineering systems.

“Perhaps the fundamental equation that describes the swirling nebulae 
and the condensing, revolving, and exploding stars is just a simple 
equation for the hydrodynamic behavior of nearly pure hydrogen gas”.    
-- Richard Feynman



The vortices produced by the flapping wings of a fruit fly (Drosophila) are 
smaller than 1 mm in size, while the length scale associated with colliding 
galaxies is if order light years.

 The time scale of the eddies produced by the hovering Drosophila is less than 
one second, while the time scale for  colliding galaxies  is billions of years. 

Flows on these vastly different scales are described by the same basic 
equations.



Hydrodynamic  (continuum) approximation

Lhydro>> mfp
 

Fluids can be considered as continuous fields if the characteristic 
macroscopic motions are much larger than molecular motions, i.e. if

In this case, we can use continuum mechanics and express the 
equations of motion in terms of partial differential equations 

There needs to be a sufficient number of atoms so that a density can be 
assigned and further that relative fluctuations in density will be negligibly 
small (they decrease as N-1/2, where N is the number of atoms in a volume 
with the characteristic dimension of the length scale we are considering).



Viscous forces

If you apply a shearing force to a fluid it will move— the shear forces are 
described by the viscosity. Consider a layer of fluid between two plates, one 
stationary and one moving at a slow speed v0

F
A
=η

v0
d

where F is the force required to keep the upper plate 
moving and η is the dynamic or shear viscosity.Shear stress:

A more practical viscometer 
due to Mallock and Couette



∫ ρ u⃗ ⋅ d s⃗=− d
dt
∫
V

ρdv

Basic Fluid Equations

The equations of mass, momentum and energy conservation are 
written down in a coordinate system that is fixed in space (“Eulerian” 
description).

Considering a fluid of density  moving at a velocity u:  the mass 
flux through an element of surface area ds of a volume V of fluid 
must be equal to the rate of mass loss in the volume:

∂ ρ
∂ t
+∇ ⋅ (ρu )=0

Mass conservation then takes the form:



Assuming constant density (note: we will assume this even in the 
case where there is thermal expansion due to heating) this reduces to 
the divergenceless condition (one of the advantages of dealing with 
incommpressible fluids):

∇ ⋅ u=0

For the conservation of momentum  we write down the equations in 
terms of a force per unit volume f.

Like the magnetic field B in electrodynamics the fluid velocity has zero 
divergence (there is a close analogy to the equations of  electrodynamics).

ρ ⋅ (acceleration )=f

f=−∇ p+fvisc+fext



Note: the acceleration is not simply  
∂ v
∂ t

A fluid particle can also change its momentum by flowing to a place where the 
velocity is different. 

In fact, the rate of change of any quantity, say “G”, is given by

DG
Dt

= ∂G
∂ t

+ux
∂G
∂ x

+u y
∂G
∂ y

+u z
∂G
∂ z

∂G
∂ t
+u⃗ ⋅ ∇G

where  the operator 

D
Dt

≡
∂
∂ t
+u⃗ ⋅ ∇ is the substantial or convective derivative



Flow past a circular cylinder. (a) Re = 26. (b) Re = 2000.  
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Consider simple pressure-driven flows:

(Navier - Stokes)

Reynolds



If we consider two simple flows that are geometrically similar, then they are also 
dynamically similar  if the corresponding Re is the same for both, regardless of the 
specific velocities, lengths and fluid viscosities involved. 

Matching such parameters between laboratory testing of a model and the actual 
full-scale object is the principle upon which aerodynamic model-testing is based.  
We will touch on these applications later. 

Above left: wake behind a flat plate in the laboratory inclined 45 degrees to the direction 
of the flow (left to right).  Above right: A foundered ship in the sea inclined 45 degrees to 
the direction of the current.

Dynamical similarity 



   Turbulent flows are characterized by having high rates of diffusion of 
momentum and/or heat.

   The molecular time scale for momentum diffusion is (dimensionally):

tM ~
L2

ν
   A corresponding time scale for diffusion in turbulent flows can be 

estimated using the large scale L and velocity u, which are the most 
effective at mixing :

tT ~ L/u

Then 
tM
tT

~
uL
ν
=ReL

   ReL of a turbulent flow then can be interpreted as the ratio of a 
characteristic molecular time scale to a turbulent time scale  in the 
case that the former is evaluated over the same length scale.  

Some dimensional considerations



This rotation of the fluid is called the vorticity.

It will be useful to coinsider a new vector field Ω  as the curl of u

Ω=∇×u

∮u ⋅ dl=∫
A

(∇×u ) ⋅ dA

By Stokes theorem we can relate the sum of vorticity over a given area to a 
circulation around any reducible loop in the fluid bounding that area: 

Note: we already saw  in the case of superfluids having zero curl of the velocity 
there was still a non-zero circulation. This is because of the hollow vortex core 
which means that the circulation cannot be reduced to a point.



Vortex lines have to end on solid boundaries or on themselves. The latter are 
vortex rings ( e.g., smoke rings). 



Besides its impotance in the motion of submarines, ships and aircraft, pollutant 
dispersion in the earth's atmosphere and oceans, heat and mass transport in 
engineering applications as well as geophysics and astrophysics turbulence is also a 
paradigm for strongly nonlinear systems, distinguished by strong fluctuations and 
strong coupling among a large number of degrees of freedom.  [G. Falkovich, K.R. 
Sreenivasan, Phy. Today 59, 43 (2006)].   

Turbulence  is particularly useful because the equations of motion are known and can be 
simulated with precision. And so, even distant areas such as fracture [M.P. Marder, 
Condensed Matter Physics. Wiley, New York (2000)]--- perhaps even market fluctuations 
[B.B. Mandelbrot, Scientific American 280, 50 (1999)]---may benefit from a better 
understanding of it.

Focusing on turbulence



The complexity of the underlying equations (Navier -Stokes) has precluded much 
analytical progress, and the demands of computing power are such that routine fully -
resolved simulations of large turbulent flows has not yet been possible. 

Thus, the progress in the field has depended heavily on experimental input. This 
experimental input in turn points in part to a search for optimal test fluids, and the 
development and utilization of novel instrumentation.



Some defining characteristics of turbulence* 

Irregularity:  Turbulent flows are irregular and random. This complexity will 
exist in both space and time (spatial irregularity itself clearly does not 
constitute turbulence nor does the converse). Even though the deterministic 
Navier Stokes equations presumably contain all of turbulence it is 
impossible to predict the precise values of any variables at any time. 

Statistical measures, however, are reproducible and this has led to 
statistical approaches toward solving the NS equations. This always leads 
to a situation in which there are more unknowns than equations—the so-
called closure problem.

Diffusivity:  The most important aspect of turbulence as far as applications 
are concerned is its associated strong mixing and high rates of momentum, 
heat and mass transfer.  The randomness or irregularity is not sufficient to 
define turbulence—turbulent flows will always exhibit strong spreading of 
fluctuations. 

*see Tennekes and Lumley-- a great reference



High Re:   Turbulent flows exist only for high values of Re. They often 
originate from instabilities in the fluid such as those in  RB convection 
that we looked at yesterday. 

Dissipation:   If no energy is supplied turbulence will decay rapidly.  It 
needs to acquire energy from its environment. We will look at decaying 
turbulence in the quantum context today.

Stretching:Turbulence must then be maintained and vortex stretching is an 
important process.

We will have to consider how vortex 
stretching can occur in quantum turbulence 
where we have a restriction of a  single 
quantum of vorticity for each vortex filament



Flows: Turbulence is a property of the flow not the fluid, although it is 
tempting to find effective viscosities or diffusivities that represent the 
enhanced transport of turbulent flows.  Even if it is not a general solution 
to the problem, it is possible to find situations where it works as we saw 
yesterday in the context of  turbulent thermal convection.

Mathematically, the details of the transition to turbulence remain poorly 
understood.  



flow

grid

(Approximately) homogeneous isotropic turbulence

KolmogorovRichardson

Wavenumber representationSpatial representation



Reducing viscosity (or increasing Re) does not alter the rate of energy 
dissipation per unit mass, which is determined from the energy input) but 
rather allows the cascade of energy to continue to smaller scales. 

The smallest scale in turbulent flows is the dissipation length scale where 
viscosity becomes dominant. To see this we consider that the rate of energy 
supplied at the injection scale L per unit mass is given by

More on small scales and the energy cascade… 

u2 ⋅ u /L=u3 /L

This energy is dissipated at a rate per unit mass, ε, which must be the same:

ε=u3 /L

This must be true at all scales l  (ε is a constant) and so we have in general 

uℓ ~ ε
1/3 ℓ1/3



We can now write down the eddy turn-over time for the scale l  in terms 
of the energy dissipation rate:

t ℓ≡
ℓ
uℓ

~ ε−1/3 ℓ2/3

We can also write down the viscous diffusion time tl
diff for the same scale l : 

t ℓ
diff ~

ℓ2

ν

ℓdiss
2

ν
=ε−1/3 ℓdiss

2/3

Note that the diffusion time goes to zero faster with l  than  does the eddy 
turnover time. Viscosity becomes important at a dissipation length scale 
ldiss  for which the two time scales are equal, i.e., for 



The separation between the energy-injection scales and the dissipative 
scales increases with Re. 

So if there are any universal statistical properties of turbulence, it is 
reasonable to look for them as Re→∞

But… recall from Tuesday that Re→∞ is not the same as Re=∞  
because in the former there exists a scale at which viscosity acts (its 
wavenumber may also go to infinity) while for he latter we have an ideal 
frictionless fluid at all scales not just an approximation for the large ones.

Denoting this dissipation scale ldiss  as η (customary notation), we 
find

η=( ν3ε )
1/4

=LReL
−3 /4



(a) “Low” Re. (b) “High” Re

A turbulent jet
“inner scales” of 
length, time, and  
velocity:

Note that 
ηuη
ν
=1

The difference between two flows with the same integral scale but 
different Re is the size of the smallest eddies.  Index of refraction 
gradients are steep for the smallest eddies and hence shimmering 
seen on hot days.



Why an energy cascade  (local interaction)  and why we can’t 
recover the Euler equations as Re

  *even though eddies of size l  will be swept along by eddies of size L >> l 
 (as noted by Leonardo da Vinci) Galilean invariance of the NS 
equations of motion precludes any consequent change in their energy.

   Physically, distortions of one eddy due to another are caused by shear. 
The shear  associated with scales of any size l is proportional to the 
gradient in the scale velocity: 

sℓ ~
uℓ
ℓ
~ ε1/3 ℓ−2/3

   The greatest shear is at the smallest scales. Note this latter fact is what 
keeps the dissipation term in the NS equations from going to zero as Re 
becomes large.

    So…BIG eddies don’t significantly distort much smaller ones because 
the big ones have little shear* and tiny eddies don’t significantly distort 
much larger ones because the much smaller eddy does not act 
coherently over the scale of the much larger ones.

∞



Hence: a cascade of energy from scale to scale

E(k) = C 2/3 k-5/3

Dimensional analysis gives:

An example of a “cascade” with a 
drop of dense ink in water

C is a constant of order 1 (from 
measurements it is estimated 
to be roughly 1.5)



Q: As Re→∞  can we neglect viscosity and recover the simpler Euler equations? 

A: No, turbulence will always create small enough scales for viscosity to dominate.

Q:  Will the continuum approximation remain valid as Re increase more and more?

 A: good question

Molecular and turbulent scales

Let us consider gases: on a molecular level the characteristic length is the 
mean free path ξ and the velocity scale is the speed of sound a.  The 
kinematic viscosity is approximated by:

ν ~ aξ



η=( ν3ε )
1/4

=( ν
4Lu

u4 ν )=( νu )(uLν )
1/4

=( νu )Re1/4

ξ
η
= ν
a
⋅ u
ν
⋅ Re−1/4= M

Re1/4

M = Mach number.  High M and low Re is an unlikely combination. 

Within the Kolmogorov framework, the fluid is incompressible (M << 1) so  the 
higher the Re the better the continuum approximation!  Of course if 
compressibility becomes important then the hydrodynamic approximation may 
come into doubt. This (compressibility + high Re) can happen in some 
astrophysical systems.

Mean free path/ turbulent dissipation scale:



 Direct numerical simulations (DNS): The range of scales needing to be 
well resolved grows as Re3/4 , and thus Re9/4  in 3 dimensions. The state 
of the art in DNS is about Re~104, or about 3-4 orders of magnitude 
lower than the Re corresponding to a typically commercial jet aircraft, 
and the same amount for most atmospheric and oceanic flows.

 Large eddy simulations (LES)--which compute only the large scales 
and model the small scales-- do better, but they are not satisfactory for 
every problem. 

 Between experiments and theory:



Could nature’s turbulence “laboratories”, such as the atmosphere and 
oceans, be instrumented and studied? 

Alternatives to laboratory experiments and simulations

Yes…and they are.  But this is not a substitute for controlled laboratory 
experiments, especially when questions become more refined. Boundary 
conditions, stationarity, need to be considered.



Quantum fluid

Classical fluids

vn, rn

vs, rs

h = hn

Feynmann (PLTP, 1955) envisioned turbulence as a tangle of such “quantized” vortices
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Superfluid irrotational (curl vs=0)!

Circulation:

ieCondensate wave function: superfluid velocity:r

(in a multiply-connected region, 
otherwise Stokes’ theorem doesn’t 
allow it)



Rotating containers of helium II were observed to have a 
parabolic meniscus (Osborne, 1950).  The shape of the 
meniscus was independent of temperature which was surprising 
since it was assumed that the superfluid component would not 
rotate as a solid body.

In fact, this was resolved by considering the fluid to be 
threaded with an array of quantized vortices whose number 
obeyed Feynman’s rule:

n=
2Ω
κ

Note, here the angular velocity is denoted by Ω, rather than the vorticity as we used before. 
The vorticity is equal to 2Ω in solid body rotation, hence Feynman’s rule says that a sufficient 
number of vortices will be produced to mimic solid body rotation in the superfluid. Clearly this 
only works well for n large.

A curious observation



Regular arrays and irregular tangles of quantized vortices

The simulated tangle of quantized vortices on 
the left corresponds to 1.6K, while that on the 
right is at 0K. After Tsubota, et al (2000). 

Visualizing indirectly the regular array of 
vortices in a rotating bucket

As we shall see later, turbulent flows in the Kolmogov sense can mimic eddies 
on all scales through partial polarization of vortex bundles.

Yarmchuk, et al. 1978



H e II

Superfluid grid flow

Theses: M.R. Smith, S.R. Stalp

Measure decay of L = length of vortex line per unit volume

Pocket-size! 1-cm square channel

Original grid: robust, 65% open brass 
monoplanar grid with tines 1.5 mm 
thick and mesh spacing of 0.167 cm

Newer grid: 28 rectangular tines of 
width 0.012 cm forming 13 full meshes 
across the channel of approximate 
dimension 0.064 cm. 



Second sound is excited and detected using 
vibrating nuclepore membranes 9 mm in diameter 
mounted flush on opposing walls of the channel.

The 6 micro-meter thick polycarbonate membranes 
have a dense distribution of 0.1 micro-meter holes 
and on one side is evaporated a think layer of gold 
which makes contact with the channel wall.

The gold layer forms one electrode of a capacitor transducer, the other being 
a brass electrode as shown.  An ac signal of about 0.5 V peak to peak (in 
addition to a 100 V DC bias) results in an oscillatory motion of the membrane. 

Exciting second sound



The channel acts as a second sound resonator.  
Typically a high harmonic n=50 is used to ensure 
plane waves, which corresponds to about 20-40 
kHz.  A Lorenzian resonance peak is obtained have 
a FWHM that is temperature dependent and 
typically reaches values of Hz without 
quantized vortices in the channel

This  oscillation of the membrane thus creates a variation of the relative density 
between normal and superfluid components.  Because this density ratio is strongly 
temperature dependent  the resulting wave is also a temperature or entropy wave 
and can be detected using either a similar mechanical transducer or a thermometer!

Second sound standing 
wave resonance

In second sound the two fluid components move in antiphase (above right) such that  

ρs v s+ρn vn=0 and the overall density and pressure remain constant. 



Vinen and Hall: in experiments with a rotating container of He II they observed an 
excess attentuation of second sound in direction perpendicular to rotation axis.

This extra attenuation resulted from scattering of the elementary excitations—
normal fluid– by the vortex lines and was absent for second sound propagating 
parallel to the rotation axis.

The vorticity  in the container was known:  = 2 = L, where was the 
angular velocity of the container,  the quantum of circulation, and L the length of 
vortex line per unit volume.

Calibration



The extra attenuation was found to be given by:

where B is a mutual friction coefficient, u2 the speed of second sound, and A, A0 are 
the amplitudes of the second sound resonance with and without vortices present.

We can extend this to the case of a homogeneous vortex tangle. Taking into 
account that vortices oriented parallel to the second sound propagation do 
not contribute to the excess attenuation. Then we have for the total length 
of quantized vortex line per unit volume: 

L=
16 Δ0

Bκ ( A0

A
−1)



The length of quatized vortex line per unit 
volume L is obtained from the second 
sound measurements through the relation

Here’s the experimental procedure:

• Park the grid at the top of the channel, establish 
a second sound standing wave and fit it to a 
Lorentzian function (make sure it’s really 
parked!)

• Slowly lower the grid to the bottom and wait a 
bit.

• Pull the grid such that the velocity profile is 
linear over most the the channel and, most of 
all, through the test section

• Monitor the recovery of the second sound 
resonance peak

Where, again, A and A0 are respectively the amplitudes of the second 
sound standing wave resonance peak with and without vortices 
present, B is the mutual friction coefficient, and is the FWHM (see 
figure at  right). 



1) In classical fluid turbulence the energy dissipation rate per unit mass is 
related to the rms vorticity by the relation e = nw2. In the superfluid we 
assume that the energy dissipation per unit mass is given by e = n ‘k2L2, 
where k is the quantum of circulation and the coefficient n ‘ is an 
effective kinematic viscosity.

Asumming (not actually required) a Kolmogorov like energy spectrum:

 E(k) = C e2/3 k-5/3

Quasi-classical analysis the decay of the vortex line density

we have for the energy:

Here d is the size of the channel (the largest dimension of the measured volume)



dt

d
dC

dt

dE  3/23/1

This total energy is decreasing slowly with time :

Intergrating we get

32327  tdC

Substituting for e:

23
21

233 /
/

/

'

)(  t
dC

L




The only unknown quantity then is the effective kinematic viscosity

The Kolmogorov constant C can be taken equal to 1.5 which is its approximate 
value in classical fluid turbulence.



In fact, we observe precisely a -3/2 roll-off of the line density vs time

T=1.3K

 We see that this is indeed the case, even though for the experimental data shown 
here at 1.3K the normal fluid fraction is nearly negligible ( roughly one percent).

By fitting the decay curves to the expression for L(t) we determine the  value of the 
only unknown: the effective kinematic viscosity ’



 The black points are from the thesis of S.R. 
Stalp using a robust but rather “odd” grid:

The red points (JJN, Sreenivasan and Donnelly, 2004) were taken using a 
more conventional, albeit delicate, grid with 13 full meshes across the channel.

The dashed line is the kinematic viscosity of the total fluid defined as the ratio of the 
shear viscosity of the normal component to the total density

 All data are for a mesh Reynolds 
number, ReM=150k, corresponding to 
typical grid velocities of order 1 m s-1.

 We note that values of the effective viscosity have the same order of magnitude  as  n, but 
a different temperature dependence. The order-of-magnitude agreement with nis 
probably an accident, arising from the fact that  and n happen to have similar 
magnitudes.

 The effective kinematic viscosity

 The line connecting plusses is a theoretical result for the effective kinematic viscosity 
(Vinen & JJN, 2002), which is proportional to the quantum of circulation: 



 Finally, how good was the assumption that there was a -3/2 power law 
rather than something else?

 Clearly, curve “c”, corresponding to the power 3/2, best represents 
horizontality in this normalized plot. 



 Note: we can derive the expression for the decaying line density without 
explicitly invoking Kolmogorov. We take the expression for the energy 
dissipation rate that we considered before (lecture 2):

ε=C ε
u3

ℓ
 where the constant  C ε≃ 0 .5

ε=−dE
dt
=− d

dt ( 32 u2)

 We assume that the length scale  grows with time just as in classical turbulence 
becoming comparable to the channel width d. We then can write: 

u2=[ εdC ε ]
2
3

 Taking  we have −ε ( dC ε
)
2/3

=ε−1/3 dε
dt

 Integrating and using ε=ν '  we obtain

κL=271/2d

ν '1/2C ε

t−3 /2
 equivalent to what we found before withC ε≃ 0 .5



Inside cell dimensions
D = 5m, L = 10m, 
Max volume ~ 25,000 
gallons of liquid helium 
equivalent

Outside dimensions
~7 m dia and ~20 m high

Refrigeration needed 
< 200 W

Huge accelerator 
facilities like CERN or 
BNL would have plenty 
of liquid helium on 
hand, used to cool 
superconducting 
magnets.

A proposed 10m high convection cell capable of  Ra~1021 nearly 
comparable to that characteristic of solar convection.

RHIC, BNL



“Over a two month period we tested more than 
two hundred models of different types of wings. 
All of the models were three to nine inches long. 
We finally stopped our wind tunnel experiments 
just before Christmas, 1901. We really 
concluded them rather reluctantly because we 
had a bicycle business to run and a lot of work 
to do for that as well.”

 ---Wilber Wright

“We directed the air current from an old fan in 
the back shop room into the opening of the 
wooden box. Occasionally I had to yell at my 
brother to keep him from moving even just a 
little in the room because it would disturb the air 
flow and destroy the accuracy of the test.”

The Wright Brothers: 1st successful application of wind tunnel data

Testing applications 

An historical digression



The main “driving” force behind innovations in testing 
is for applications where you hope that “lift” never 
gets you off the ground… 

“On each little aircraft wing design we tested we located the center 
of pressure and made measurements for lift…” Wilber Wright

At Old Dominion University  
resides the largest University-
operated wind tunnel in the world. 
“Customers include NASA, the 
Navy, racecar teams (principally 
NASCAR)…”



Cryogenic testing facilities

In aerodynamic testing, one measures lift, drag and moments on a
model and infers the corresponding values on the prototype. Since Re can
often be very large in practical situations (of the order 108 or 109 for
commercial aircraft or modern submarines), it is difficult to match the 
prototype Reynolds number if the same fluid is used for model testing.

Helium has an advantage over highly compressed air because the dynamic 
pressure (1/2)ρU2 is substantially smaller for a given Reynolds number, and 
hence the helium flow can be expected to exert significantly less force on the 
models.

Another possibility with helium is the use of powerful superconducting 
magnetic balance and suspension systems both to orient models without 
the external arm or “stinger”, and to measure forces on them.



 The National Transonic Facility (NTF) at the NASA Langley Research Center, 
operating since 1984. Cryogenic liquid nitrogen is sprayed and evaporated into 
a gas that is accelerated through the tunnel's test section up to a Mach number 
of 1.2. The 150-m long tunnel is powered by a 100 MW turbine motor. The figure 
on the right shows the giant vanes that help air flow around a corner.

Re  UL

 A cryogenic tunnel



Helium wind tunnel

 A 30 cm helium tunnel could be considered “table-top” compared to the large wind 
tunnels of NASA. A 125 cm model would reach comparable Re to any of them.

NASA AMES

Liquid helium tunnel
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