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◼ Short description of fluid flow equations

◼ How to solve it ?

◼ Simple simulation examples 

◼ FLUID – software solution for industrial applications. 

◼ Industrial driven applications with examples. 

◼ Summary.
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◼ Flow equations are modeled with Navier – Stokes system of equations. Here, we assume incompressible, 

isothermal case:

◼ First equation is mass conservation equation. 

◼ Second equation is momentum conservation equation. 

◼ For Newtonian fluids we can assume that 𝜎 = 𝜇 ∇𝑣 + ∇𝑣𝑇  with constant viscosity 𝜇, but

◼ In many cases fluids are not Newtonian. 

◼ Non-Newtonian fluids posses more complicated stress – shear rate dependency, viscosity might be shear – rate, 

temperature dependent, can posses yield stress, can be composed of fluid and particles (suspensions), etc. 

𝛻 ∙ 𝑣 = 0
𝜕𝜌𝑣

𝜕𝑡
+ 𝛻 ∙ 𝜌𝑣𝑣 = −𝛻𝑝 + 𝛻 ∙ 𝜎,

where  – density, v – velocity, p – pressure,  – stress, 𝜇 – fluid viscosity.
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◼ For discretization finite volume method is used. 

◼ Navier – Stokes is a system of equations that are solved for velocity 𝑣 and pressure p.

◼ In a discrete form we can write the system in following form:  

◼ Problem is that this system is not easy to solve directly (saddle point problem). We cannot apply preconditioners 

directly. 

◼ Therefore, so called splitting methods are used (Chorin, SIMPLE, SIMPLEC, PISO). 

𝐴 𝐵
𝐵𝑇 0

𝑣
𝑝 =

𝑓
0

Where 𝐵 is discrete gradient operator, 𝐵𝑇 discrete divergence operator and 𝐴 contain velocity related 
discretization terms from momentum equation.
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◼ Chorin method splits solution of one iteration into few steps:

◼ Step 1: Solve momentum equations with pressure from previous iteration to get velocity prediction: 

◼ Step 2: Use continuity equation to build pressure correction equation: 

◼ Step 3: Correct pressure and velocities.

◼ Step 4: go to the next time step iteration. 

◼ In Step 1, and Step 2 we can use preconditioners to speedup simulation. 

◼ Pressure correction equation is of diffusion type, therefore multigrid methods are preferable to solve it fast. 

𝑣∗ − 𝑣𝑘

𝑑𝑡
+ 𝐶𝑣∗ + 𝐷𝑣∗ = 𝐵𝑝𝑘

Where 𝐴 is decomposed to time derivative, convection 𝐶 and 𝐷 diffusion parts respectively

𝑣𝑘+1−𝑣∗

𝑑𝑡
= 𝐵𝑝𝑐 with 𝑝𝑐 = 𝑝𝑘+1 − 𝑝𝑘, applying 𝐵𝑇on equation we get: −𝐵𝑇𝑣∗= 𝑑𝑡 ∙ 𝐵𝑇𝐵𝑝𝑐
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◼ Single phase flow.

◼ Pre – defined inlet velocity. 

◼ 2 simulation performed for:

◼ Case 1: constant low viscosity 𝜇 = 0.01 (𝑝𝑎𝑠) 

◼ Case 2: higher viscosity shear rate dependent (Carreau 

model)

◼ 𝜇0 = 25 𝑝𝑎 𝑠 . 

◼ 𝜇∞ = 0 𝑝𝑎 𝑠

◼ 𝐴0 = 0.1315 1/𝑠

◼ 𝐴1 = 0.4814 −

𝜇 ሶ𝛾 = (𝜇0−𝜇∞) 1 + 𝐴0 ሶ𝛾 2
𝐴1−1

2 + 𝜇∞

inlet

outlet



Offen

velocity pressure

velocity pressure viscosity

◼ Case 1:

◼Case 2: 
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◼ Breaking dam example and effect of viscosity.

◼ We initialize block of fluid and release it. 

◼ Fluid starts to flow down due to gravity force 

◼ No – slip velocity boundary conditions applied on walls

◼ Friction forces depend on viscosity value. 

◼ 2 simulation performed for:

◼ low viscosity 𝜇 = 0.001 (𝑝𝑎𝑠) (water)

◼ higher viscosity 𝜇 = 2. 5(𝑝𝑎𝑠) (honey)

Ԧ𝑔
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water honey
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◼ FLUIDsinglephase (single phase complex fluid flow simulations; Newtonian, non-Newtonian fluids. Flow in 

porous media.)

◼ FLUIDinjection (injection molding process simulations of Newtonian, non-Newtonian fluids)

◼ FLUIDmultiphase (two phase complex fluid flow simulations; Newtonian, non-Newtonian fluids. Flow in porous 

media); 

◼ Additional modules

◼ Fluid thermal flow - temperature equation.

◼ Fiber suspension - fiber orientation dynamics. 

◼ Particle suspension - particle concentration dynamics. 

◼ Scalar equations - convection-diffusion-reaction equations (up to 10). Scalar equations alse as separate stay 

alone solver module. 
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◼ All solvers can be coupled with all modules through fluid viscosity, friction, stress;

◼ All solvers can be coupled with 

◼ Many input parameters, boundary conditions can be defined in UDF (user defined functions) through functional 

parameter editor;
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injection solver.
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Generalized Navier-Stokes- Equations
Flow: Incompressible, thermal Navier-Stokes with generalized anisotropic stress

Modified Folgar-Tucker Equations:   
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Example: Poiselle flow with fiber back coupling
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Isotropic back coupling model, Np=10:

Newtonian fluid -> <- Newtonian fluid with fibers

G.G.Lipscomb et al., Vol.26, p297-325 JNNFM, 1988 

Non-isotropic back coupling model used in ITWM code, Np=10:
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◼ Simulation studies performed for:

◼ Closure approximation: smooth 

orthotropic

◼ Diffusion coefficient: Ci = 0.0025

◼ Maier-Saupe term: W=7

◼ Fiber concentration parameters: 

𝐾𝑐𝑜𝑙𝑙 = 0.175, 𝐾𝑣𝑖𝑠𝑐 = 0.175



Offen

smooth orthotropic closure

𝐾𝑐𝑜𝑙𝑙 = 0.175, 𝐾𝑣𝑖𝑠𝑐 = 0.175, 𝑘 = 0.5, 𝐶𝑖 = 0.0025, 𝑊 = 7
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◼ Simulation studies performed for:

◼ Closure approximation: smooth 

orthotropic

◼ Diffusion coefficient: Ci = 0.0025

◼ Maier-Saupe term: W=7

◼ Fiber concentration parameters: 

𝐾𝑐𝑜𝑙𝑙 = 0.175, 𝐾𝑣𝑖𝑠𝑐 = 0.175
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https://www.itwm.fraunhofer.de/de/abteilungen/sms/produkte-und-leistungen/fluid-simulationssoftware-fuer-komplexe-fluide.html



Offen

injection solver.
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◼ Fluid flow is governed by Navier-Stokes-Brinkmann equations: 

◼ Viscosity does not have to be non-constant, permeability tensor might be non-isotropic 

◼ Applications: fluid flow, injection molding (free surface flow), two phase fluids flow

𝛻 ∙ 𝑣 = 0
𝜕𝜌𝑣

𝜕𝑡
+ 𝛻 ∙ 𝜌𝑣𝑣 = −𝛻𝑝 + 𝛻 ∙ 𝜎 − 𝜇 ഥ𝐾−1𝑣,

where  – density, v – velocity, p – pressure,  – stress, 𝜇 – fluid viscosity, ഥ𝐾 - permeability tensor.

ഥ𝐾−1 = ቊ
0 , 𝑖𝑛 𝑓𝑙𝑢𝑖𝑑 𝑝𝑎𝑟𝑡

𝐾−1, 𝑖𝑛 𝑝𝑜𝑟𝑜𝑢𝑠 𝑝𝑎𝑟𝑡
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Filling study , 2D test geometry.
Validation of algorithm with porous part: 
porous media described through 
permeability tensor K (macro case)

Validation of algorithm with porous part: 
geometrically resolved porosity (micro case) 
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Filling study , 3D mold.

CAD-data of injection mold (left) and part model (middle) and formed part with integrated 
fiber bundle (right)
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Filling study , 3D mold.

Mold with rovings

Mold without rovings
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Filling study , 3D mold. Flow front comparison. 
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Simulation: increasing of the impregnation level with duration of melt overflow.

Experiment: Photomicrographs along flow path of embedded fiber bundle.

Simulation indicated regions that could be difficult, or not possible to perforate.

Filling study , 3D mold. Flow front comparison. 
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multiphase solver.
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◼ SMC process simulated based on fluid mechanics on fixed grids.

◼ Moving part is modeled via stl file.

◼ Moving part surface is detected in each time step iteration and moving 

part velocity is passed to surface grid elements

◼ Fluid flow is governed by Navier-Stokes, or Navier-Stokes-Brinkmann 

equations

◼ Modeling allows to apply all equations used in other applications, like 

injection molding

◼ Temperature

◼ Fiber orientation

◼ Particle concentration, etc.
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◼ Many SMC materials consist of fiber bundles and matrix material. 

◼ In the modeling we want to add option for the matrix material to partially overflow fibrous skeleton. 

◼ We assume that velocity is decomposed into (Perez et.al. 2019):

◼ where in dilute regime 𝜶≈𝟏. Then we have two pressure gradient contributions:

◼ Where 𝒂 denotes fiber orientation tensor and 𝑫𝒔 fluid rate-of-deformation tensor. Combining pressure 

gradients, we get

ቐ

𝑣 = 𝑣𝑠 + 𝑣𝑑

𝑣𝑠 = 𝛼 ∙ 𝑣
𝑣𝑑 = (1 − 𝛼) ∙ 𝑣

൝
𝛻𝑝𝑠 = 𝛻 ∙ (𝜇𝛻𝑣𝑠 + 2𝜇𝑁𝑝 𝐷𝑠: 𝑎 𝑎)

𝛻𝑝𝑑 = −𝜇 ഥ𝐾−1𝑣𝑑

𝛻𝑝 = 𝛻𝑝𝑠 + 𝛻𝑝𝑑
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◼ In the modeling we have option for the matrix material to partially overflow 
fibrous skeleton
◼ Fluid flow is governed by Navier-Stokes-Brinkmann equations:

◼ where  – density, v – velocity, p – pressure,  – stress, 𝜇 – fluid viscosity, ഥ𝐾 - 

permeability tensor

◼ Parameter 𝛼 describes fiber-fiber (skeleton), fiber-fluid interaction. It defines 
how much fluid overflows fibrous skeleton. For 𝛼≈1 fibers flow with fluid (matrix) 
material. For smaller 𝛼 more flow through porous-like fibrous skeleton occurs. 
◼ Permeability should depend on fiber orientation tensor 𝑎 and fiber 
concentration 𝜙. 
◼ In addition, fiber orientation, temperature, curing equations are solved.

𝛻 ∙ 𝑣 = 0
𝜕𝜌𝑣

𝜕𝑡
+ 𝛻 ∙ 𝜌𝑣𝑣 = −𝛻𝑝 + 𝛻 ∙ (𝛼𝜇𝛻𝑣) − (1 − 𝛼)𝜇 ഥ𝐾−1𝑣,

ഥ𝐾−1 = ቊ
0 , 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑆𝑀𝐶

𝐾−1, 𝑖𝑛𝑠𝑖𝑑𝑒 𝑆𝑀𝐶
 

DSC curing measurements

Viscosity measurements
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◼ Fibers flow with velocity 𝑣𝑠 = 𝛼 ∙ 𝑣. We solve additional equation

◼ where 𝜑∈[0,1] and represents fiber position for 𝜑=1. 
◼ Position of SMC material follows:

◼ where f∈[0,1] and represents SMC position for f=1. 
◼ Since we assume incompressibility, fiber volume concentration can be obtained from simple 
re-scaling

◼ for permeability Gebart’s relation could be used (Nabovati et.al. 2009), permeability 
depends on porosity 𝜃=1−𝜙: 

𝜕𝜑

𝜕𝑡
+ 𝛼𝑣 ∙ 𝛻𝜑=0

𝜕𝑓

𝜕𝑡
+ 𝑣 ∙ 𝛻f=0

𝜙 = 𝜙𝑖𝑛𝑖𝑡

σ𝑓>0 𝑓𝑐𝑣

σ𝜑>0 𝜑𝑐𝑣

𝐾 𝜃 = 𝐾0𝐶1

1 − 𝜃𝑐

1 − 𝜃
− 1

𝐶2
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◼ Curing model based on Rao.et.al. (2017):

𝐷𝜉

𝐷𝑡
= 𝑘 𝑏 + 𝜉𝑚 𝜉𝑚𝑎𝑥 − 𝜉 𝑛

𝑘 = 0.5 − 𝐵 1 + tanh ( 𝐷 𝑡 − 𝑡𝑠
𝜉

+ 2𝐵]
1

1 + 𝜔𝛼𝑇
𝛽

𝑘0𝑒−
𝐸𝜉

𝑅𝑇

log10 𝛼𝑇 =
−𝐶1 𝑇 − 𝑇𝑔

𝐶2 + 𝑇 − 𝑇𝑔
,  𝑇𝑔 =

𝑇𝑔0 1 − 𝜉 + 𝐴𝜉𝑇𝑔∞

1 − 𝜉 + 𝐴𝜉

◼ Temperature: 

𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
+ 𝐯 ∙ 𝛻𝑇 = 𝛻 ∙ 𝑘𝛻𝑇 +

1

2
𝜂𝑚𝐃 ∶ 𝐃 + 𝜌𝐶𝑝𝐻𝑅

𝑑𝜉

𝑑𝑡

◼ Viscosity contribution: 

μ = μ ∙
𝜁

𝜁 − 𝜁𝑚𝑎𝑥

𝐴+𝐵𝜁
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Value for 𝐾𝑥 and 𝐾𝑦 :

𝐾𝑥(𝜆𝑥 , 𝜆𝑧 , θ𝑐𝑙𝑢𝑠𝑡𝑒𝑟) = 10−9 × (4,27 + 4,62 𝜆𝑥 − 6,75 𝜆𝑧) × (
1−0,0743

θ𝑐𝑙𝑢𝑠𝑡𝑒𝑟
− 1)2,31

𝐾𝑦 = 𝐾𝑥 𝜆𝑦 , 𝜆𝑧 , θ𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝐾𝑥(1 − 𝜆𝑥 − 𝜆𝑧 , 𝜆𝑧 , θ𝑐𝑙𝑢𝑠𝑡𝑒𝑟)

Value for 𝐾𝑧 (here, 𝜆𝑥 ≥ 𝜆𝑦):

𝐾𝑧(𝜆𝑥 , 𝜆𝑧 , θ𝑐𝑙𝑢𝑠𝑡𝑒𝑟) = 10−9 × (1,432 − 0,723 𝜆𝑥 + 1,3 𝜆𝑧) × (
1−0,0743

θ𝑐𝑙𝑢𝑠𝑡𝑒𝑟
− 1)2,31

Formula for SMC permeability ഥ𝐾 

◼  In formulas below fiber orientation 𝝀𝒙 > 𝝀𝒚 > 𝝀𝒛 denote fiber orientation tensor eigenvalues
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Initial fiber orientation (0.4,0.4,0.2) Initial fiber orientation (0.3,0.6,0.1) Initial fiber orientation (0.1,0.8,0.1)
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◼  FLUID SMC solver test examples, cuboid initial material shape, flat press, flat bottom
◼ Arbitrary model and fibre orientation input data. 
◼ Test of back coupling of fibre orientation on the flow. 
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Applied 
tonnage

Pressing 
speed

Tool 
Temperature

Blank size
Curing 
time

680Tn 20mm/sg 150ºC /153ºC
6 blanks of 

120x500mm
35sg

Process conditions◼  Cowl Panel 

◼ Initial prepreg position consists of 6 

blanks placed on top of each other 

◼ Front flow studies are preformed. 

◼ The experimental data were obtained 

by stopping the pressing process at 

different closing heights of +2mm, 

+1.4mm, +1.0mm, +0.4mm from the 

final closure. 

◼ Cure data are evaluated
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◼  Cowl Panel front flow 

propagation. 
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experiment FLUID (𝑎𝑦𝑦
(2)

 fiber component) 

y-axis
x-axis

+2.0mm

+1.4mm

+1.0mm

+0.4mm

◼  Cowl Panel front flow comparison. 

◼ FLUID: good agreement, material 

tends to flow sideways (in the y-axis 

direction) at first. Afterwards, the front 

spreads downward (in the positive x-

axis direction) 
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P1

P2

P3

◼  Cowl Panel curing comparison. 

◼ The real cycle time is about 35 

seconds. 

◼ FLUID simulation predicts more than 

79% of cure at about 34 seconds for 

all sample point, where solid state 

should be already expected 
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P1

P2

P3

◼  Cowl Panel curing comparison. 

◼ The real cycle time is about 35 

seconds. 

◼ FLUID simulation predicts more than 

79% of cure at about 34 seconds for 

all sample point, where solid state 

should be already expected 
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Summary                             framework and 

Framework for Solver Kernel development

Linear and nonlinear PDE Systems

Object oriented system description

Automatic discretization

Input of Solver Kernels

STL Surface Mesh 

CIF (XML CoRheoS Input Format)

Output of Solver Kernels

VTK 

User defined integral data and history

Numerics available to Solver Kernels

Finite Volume Discretization

Parallel linear and nonlinear algebra

Newton Methods with AMG linear solver

Available Solver Kernels

Compressible and incompressible fluid flow

Coupling with Granular Flow (Dilute, Dense)

Potting simulations.

Injection molding, sheet mold compression

Electrochemistry (Li-Ion Batteries)

Polymer flow

Fiber orientation

Advanced CFD features

Moving parts/boundaries interaction (experimental)

Free surface flow

Two phase immiscible fluid flow.

User-defined functions. 
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◼ We presented some aspects of computational fluid dynamics.

◼ We discussed several examples of industrial applications. 

◼ Do not be afraid of CFD ! It is not trivial, but all efforts are compensated when 

simulation predicts experiments and shows what we can observe experimentally. 

◼ Next lecture: 

◼ Presentation of FOAM software

◼ FOAM – simulation software for expanding foams (chemical, physical 

blown) 



Vielen Dank für Ihre 
Aufmerksamkeit
—
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