ICAWMSCS 24 May 27-31, 2024

High Performance Computing
Workshop - Day 2

onime@ictp.it

mailto:onime@ictp.it

File operations

* |nput
— Sometimes can differentiate between text and
binary files
— Sequential or random
* QOutput
— Create non existing
— overwrite or clobber existing
— Or append

* Fopen, printf, scanf, fgetc, fclose, fputc,
ungetc

Answer: Von Neumann vs Harvard

6/9/2024

vs modern architecture

Control Unit

Arithmetic/Logic Unit

Control bus

Address bus

v

Data bus

23

CONCEPTS OF PARALLELISM

Section outline

Role of computing in Science

Parallel computing
— Why is it important?
— Accessing High Performance Computing

 Build your own cluster
e Others
* Cloud based

OpenMP parallel programming
Examples of algorithms

What some challenges you would
like to overcome?

Scientific might be..

A problem as it can be...
*... too HARD
— e.g. building large wind tunnels
o... too EXPENSIVE
— building a throw-away passenger jet
— Simulate lasers behavior
.... too SLOW
— waiting for climate or galactic evolution
o... too DANGEROUS or CONTROVERSIAL

— Research on nuclear or radioactive material
— stem cell research

Science with computers

Paradigm of Science Now, less expensive
e Observe e Observe
e Theorize e Theorize

.

»

e Computation
¢ Modeling & simulation

"

e Experimentation

Also, in certain fields, the observe phase is replaced by
Simulation. E.g: Study of the early Universe...

What is parallel computing

* Serial computing
— Single program broken into parts, parts broken
into single instructions, single instructions run one
at a time on single CPU
* Parallel computing
— Program broken into parts, each part broken into
single instructions that maybe run concurrently on
different CPU(s)
* Simultaneous use of multiple compute

resources to solve a computational problem

Why Parallel computing
modeling real world

* Useful as it can closely model the real world
situations:- Many complex interrelated events
happening at the same time within a temporal
sequence. E.g: rush hour traffic at big
junction, and rain... or changing car tyre

1 _ -

What’s happening right now?

. 3.47TM) o Tweeter

\ OUTUBEVIDEOS

EMAILS SENT

Iu‘l / yd
[/ ' 4
[/ v
/ i T
/ s P
d @ /’/ 1 3 . 2 K

= LISTENERS ACTIVE
— ON SPOTIFY

3.5

SNAPCHATS
CREATED

S

D
VIDEOS SHARED
ON INSTAGRAM

LE
SEARCHES

115.7K

SEARCHES
‘ON PINTEREST

PEOPLE VIEWING
FACEBOOK LIVE
STREAMS

¥ LocaliQ

— 5833 tweets per second
or 171us per tweet

— Directed graph model
* G=(V,E)
* Inter user relationship
— (v,,v) €E
* Shortest distance
— d(v,, vj)
* Sub-graphs
— Single source shortest
path

Why Parallel computing

* Only way to make optimal use of new/
evolving generations of CPU processors. E.g:
dual core and beyond.

. . Memory Controller
© VDDQ, V-Uncore

Cores
V-Care

: v g g La T I L R
] I1'] = = .. Cache o = s
< " WiOncored 1™ E

Intel Westmere CPU

Pentium |

Core Core Q Core Core
u
e
u
e

Shared L3 Cache

Microprocessor Evolution:

Core

Cache

o Jor =

from single- to multi-core

Pentium I Pentium Il

- Ve e

Presentation from ICHEC, Ireland

Now many-cores

* Single computer
- — 2483 Nvidia cores

CUDA CUDA
— Nvidia specific

‘ NoR oEmEre oereres | ¢ OpenCL

B BEE f’“ i e — Same executable
| MIL;‘ -._ :.Sharau ‘Constants| Te mmﬁmmsanaraﬂ Constants| Te:-:twa Softwa re canrun on Cpu
and/or gpu

— Distributed/networked
b o systems

HPC clusters and Super-Computer

Directory

Processor
+ cache

systems

standard hardware plus accelerators

Processor
+ cache

Processor
+ cache

Memory '—

Processor

+ cache

I/O

I Memory I—

= GPU Directory I—

| Directory I—

-| GPU | | Directory I—

Interconnection network

Directory

Memory

Em]EEm

Processor
+ cache

Processor
+ cache

U

£ 2007 Elsaiar, Inc. All rights reserved

| Memory .—

Processor
+ cache

Processor

I/O | Memory I— e}

+ cache

Slide from Introduction to
HPC by ICHEC, Ireland

A full hybrid system

pros & cons

ADVANTAGES:
* Accelerators (GPUs) can speed-up the calculation up to 100x times!

DISADVANTAGES:
* Accelerators require their own programming environment, need to learn..

—> A little bit of work for potentially huge advantages in speed and performance.
Think about that.

Scaling your scientific research
work

* Many computers
(nodes) interconnected
by high speed network.

 Commodity clusters

* Hybrid supports both
shared & distributed
architecture &
programming

THINKING IN PARALLEL

Break your work into tasks

Step 1: Decomposition —

* Breaking the problem into ey ;
tasks (discrete chunks of l— .l A\
===

work) » E‘

— Functional decomposition is
based on tasks to be done.

— Domain decomposition is
based on data partitioning

v L

Land/Surface Model I' -

Preparing your data

1D
m_ncu cvcuc
t.nk 1 task 2 ‘tuk 3

e different ways to partition data:

BLOCK, * *, BLOCK BLOCK, BLOCK

CYCLIC, * *, CYCLIC CYCLIC, CYCLIC

Data Parallel approach

Parallelism is focused around operations on
data

Data is organised in common structure such as
array (1, 2 or 3D)

Tasks work collectively on same data structure
but each task has a different range or portion.
All tasks perform same operation on data.

Can be carried on shared or distributed
memory architecture systems

Data parallel implementation

* Program usually have to be written from the

ground up as data parallel.

* Requires a data parallel compiler(or library)
— Included in Fortran 95.

 Compiler directives used to specify
distribution and alignment of data

Data exchange b/w tasks

STEP 3: Communication

* |s communication required?
- embarrassingly parallel 0 () WO OO
communication needed) | ' '

— If yes then consider

* cost, synchronous, latency/ 3
bandwidth rosdeas i

o .00.

gather

Collating outputs

STEP 3: Synchronization STEP 4: Data dependencies
e |ssynchronization required ¢ Does the order of
 Which one statements affect results?
— Barriers: — Check especially in loops
* Starting or stopping together — A(J)=A(J-1) * 2.0
— Locks/semaphores — Y=X**3
* Critical regions (code or e Other STEPS
data) — Load Balancin
— Acknowledgments 5

— Granularity (ratio of
computation to
communication)

— 1/0

* MPI

Exercise:

» Select an existing computer problem and
apply the 4 steps..

HANDS-ON EXAMPLES

Basic implementation blocks

* [terative e Parallelism
— Fixed size iterations — Divide and conquer
* “FOR” loops * by tasks/functions
e Recursive — Split tasks into smaller
) . . . independent units for
— Variable sized iterations execution
e “WHILE" loops « by data
e Conditions — Split data into smaller

independent blocks for
processing

_ ((IF))

Vector addition

e Basic equation * Parallel implementation
c=atb #pragma omp doschedule
Where a and b are array for (i = 0; 1 < 1000; i+fr)
vectors with 1000 cli] = ali] + b[i];
element each. — vvhat Is the optimal
number of threads that
. . . ?
* Serial implementation: should be used:

e Explain your answer
. . - — |s this task or data
for (i = 0; i < 1000; i++) 5
c[i] = a[i] + bli]; parallel

Try to write a serial recursive
implementation?

Matrix - Vector multiplication

* Algorithm * Notes for Parallel
clillj] += alillk] * bIk][j] implementation
* Whereiisnoofrowsina, — Iterative is always easier

J is number of colsin b, k .
is no of cols in a — Shared memory using
openmp

. rial implementation
Serial Implementatio — Alternative distributed

— Iterative (how many memory using openmpi
?
|OOpS are needed) * What communications?

— Can you develop the

recursive solution for
this?

Factorial
n!'=n(n-1)(n-2)..1

e Algorithm e Parallel implementation

I, ifn=>0 — Hint:
Forn > 0. n! =

n*(n—1)!, otherwise

e Serial implementation

/* Factorial */

Recursive:
int factorial(int n) {
if (n == 0)
return 1;
else
return (n * factorial(n-1));
i
Iterative:
int factorial(int n) {
int i;

int factorial;

factorial =1

for (i=n; i>=2; i--)
factorial *= i;

return (factorial);

Fibonacci numbers

e Algorithm e Parallel implementation
0, if m =10
fib(n) = {1, ifn=1
fib(n-1) + fib(n-2), otherwise
* Serial Implementation
— Recursive
— |terative
— Memory based speed

up?

GCD

e Algorithm e Parallel implementation

Form>n >0

n, ifm % n=20
ged(m, n) =<

ged(n, m%n), otherwise

~\e 11Ul 111 IVI\'III\'I ILCCARLIVIE I

— Recursive solution
— |terative solution

Calculation of PI ()

* Equation

1

1

1

/ dz = arctan(z)
o 1+ 22

I |
?T:f':l/ dz
o 1+z2

Integration: determining the
numerical area under a function
may be approximated from the
summation of fixed width slices of
f(x) at midpoints as shown in the
diagram. Accuracy is inversely
proportional to the width.

0

= arctan(l) — arctan(0) = arctan(l) = :

m

K ——

04

05

	1 - High Performance Computing
	2 - File operations
	3 - Answer: Von Neumann vs Harvard vs modern architecture
	4 - CONCEPTS of parallelism
	5 - Section outline
	6 - What some challenges you would like to overcome?
	7 - Scientific might be..
	8 - Science with computers
	9 - What is parallel computing
	10 - Why Parallel computing
modeling real world
	11 - What’s happening right now?
	12 - Why Parallel computing
	13 - Microprocessor Evolution:
 from single- to multi-core

	14 - Now many-cores
	15 - HPC clusters and Super-Computer systems
standard hardware plus accelerators
	16 - A full hybrid system
pros & cons
	17 - Scaling your scientific research work
	18 - thinking in parallel
	19 - Break your work into tasks
	20 - Preparing your data
	21 - Data Parallel approach
	22 - Data parallel implementation
	23 - Data exchange b/w tasks
	24 - Collating outputs
	25 - Exercise:
	26 - Hands-on Examples
	27 - Basic implementation blocks
	28 - Vector addition
	29 - Matrix – Vector multiplication
	30 - Factorial
n!=n(n-1)(n-2)..1
	31 - Fibonacci numbers
	32 - GCD
	33 - Calculation of PI (π)

