

Mathematical Modeling: An Industrial Perspective

Ikenna Ireka (Ph.D.)

International Conference and Advanced Workshop on Modelling and Simulation of Complex Systems, May 2024, Obafemi Awolowo University Ile-Ife, Nigeria

Journey of most STEM students

Freshmen / Jambites

INDUSTRIAL CHALLENGES AN OPPORTUNITY FOR APPLYING MATHEMATICAL TOOLS

Some Challenges in the Industrial

- Optimize processes at minimal cost
- Remain Competitive at minimal cost
- Minimize experimental cost
- Optimize time to market

• ...

- Understand processing behavior of products
- Create/Design new products for competitive advantage

Resolving industrial challenges Mathematically

- Deterministic approach (known inputs)
 - Mathematical Modeling via physical laws (Differentia-Algebraic equations)
 - Numerical techniques
- Stochastic approach (randomness)
 - Data driven techniques
 - Machine Learning models
 - Forecasting (probabilistic models)
- Hybrid approach
 - Artificial Intelligence
 - Al-augmented simulations

Modeling Industrial Problems

USE CASE POLYMER INDUSTRY (SIMULATION SCALE)

USE CASES: MATHEMATICAL METHODS IN POLYMER INDUSTRY (MACRO-SCALE SIMULATIONS)

Case 1: Some Questions in Polymer Injection molding

How can we

- understand the mold filling behavior in closed molds?
- optimize process conditions and cycle time per molding process?
- minimize defects in finished parts?
- understand the material that is optimal for the mold of interest?
- Efficiently design and maintain mold tooling to minimize failure?

Plastics Injection Mould Tool | Rutland Plastics

Modeling Injection molding

The Navier-Stokes Equations subject to appropriate boundary conditions

- Conservation of mass $\nabla \cdot \vec{v} = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial t} + \vec{v} \cdot \nabla \rho \right) = 0$ (incompressibility)
- Conservation of linear momentum $\frac{\partial \rho \vec{v}}{\partial t} + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla p + \nabla \cdot \boldsymbol{\sigma} + \rho g$
- Conservation of $\rho C_p \left(\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T \right) = \nabla \cdot (\kappa \nabla T) + \frac{1}{2} (\mu_{mix} D : D)$ energy:

12

Case 1: Results Injection molding

ITWM

Case 1: Results & Validation Injection molding (3mm thickness)

Case 1: Results & Validation Injection molding (5mm thickness)

Case 2: Some Questions in Polymer Reinforced Injection molding

What

 is the effect of the reinforcing structure on the

flow pattern?

- regions of the structure will not be impregnated (wetted/dry) in the mold?
- would be the optimal processing condition for such composite structure?
- is the orientation of reinforcing chopped fiber glass in the formed part?

Sample Spacer fabrics used as inserts in the molding tools

K Schäfer et al: Eng. Res. Express 3 (2021) 025027

Governing equations: Structural / chopped fiber Reinforced Injection molding

The Navier-Stokes-Brinkman Equations with appropriate boundary conditions

• Conservation of linear momentum $\frac{\partial \rho \vec{v}}{\partial t} + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla p + \nabla \cdot \boldsymbol{\sigma} + \rho g - \mu_p \widehat{\boldsymbol{K}}^{-1} \vec{v}$ $\widehat{\boldsymbol{K}}^{-1} \begin{cases} \boldsymbol{K}^{-1}, & \text{porous region} \\ 0, & \text{non - porous region} \end{cases}$

The **Navier-Stokes-equations + Folgar-Tucker equations** with appropriate boundary conditions

• Orientation tensor
$$\frac{dA}{dt} = W \cdot A - A \cdot W + \varepsilon (D \cdot A + A \cdot D - 2A^{(4)} : D) + 2D_r (I - 3A)$$

Case 2: Result, structural Reinforced Injection molding

Finished Part

2D Micro pore simulation

@@@FLUID

2D Simulation with permeability tensor (*K*)

Case 2: Result, structural Reinforced Injection molding

Case 2: Results Orientation tensor of chopped fiber in reinforced Injection Molding

Case 3: Some questions in Sheet Compression Molding (SMC)

- What amount of lumped polymer should put in the mold,
- Where should the initial material (lump polymer be placed in the mold for optimal distribution.
- What is the solidification time, i.e. how long do I need to wait for before opening the mold?
- What is the orientation of reinforcing chopped fiber glass?
- What is the distribution of the fiber in the finished part

<u>The Complete Guide to Compression Molding - MDC</u> <u>Mould (zjmdc.com)</u>

Case 3: Results, Compression molding

Case 4: Reaction Injection Molding of Polyurethane (PUR) or Polyisocyanurate (PIR) foams

How can one

- minimize number of experimental trials
- enhance product development time
- understand the complex dynamics of expanding PUR foams in closed molds
- optimize processing (venting plan in automotive dashboard, optimal process temperature...)
- optimize mold design
- ...

Application of reaction Injection molding of Polyurethane foams

Automotive

11th October 2024 | Virtual Polymeric foam Development & Processing - Challenges and Prospects | MMiPE_2024

Quick overview: Chemistry of PUR/PIR foams

PUR Foam expansion experiment: Observed Physics

Modeling Reaction Injection Molding of Polyurethane (PUR)foams

The Navier-Stokes Equations + additional equations for specie transport

• Conservation of $\rho C_p \left(\frac{\partial T}{\partial t} + \nu \cdot \nabla T \right) = \nabla \cdot (\kappa \nabla T) + \frac{1}{2} (\mu_{mix} \mathbf{D} : \mathbf{D}) + S_R$ energy:

$$(-\Delta H_{oH}, -\Delta H_{w}, \Delta H_{PIR}) \cdot \left(\frac{dC_{OH}}{dt}, \frac{dC_{w}}{dt}, \frac{dC_{PIR}}{dt}\right)^{T}$$

• Equation for Concentration of
$$CO_2$$
: $\frac{\partial C_{CO_2}}{\partial t} + \nabla \cdot (\nu C_{CO_2}) = K_w C_{NCO} C_w$,

• Equation for Water and Polyol concentrations:

$$: \frac{\partial C_i}{\partial t} + \nabla \cdot (\nu C_i) = -K_i C_i C_{NCO}$$

$$K_i = A_i e^{-\frac{E_i}{RT}} \quad and \quad i = \text{OH, } w$$

• Equation for NCO Concentration $\frac{\partial C_{NCO}}{\partial t} + \nabla \cdot (\nu C_{NCO}) = -(K_w C_w + K_{OH} C_{OH}) * C_{NCO}$

Case 2: Result & Validation, PUR Foam expansion

Experiment t=150secs (e) t=200secs (f) t=250secs (d) t=150secst=200secs(a)(b) (c)t=250secsSimulation

Case 2: Result, PUR foam Structural Reinforced Reaction Injection molding

Rectangular geometry:

Case 2: Result, PUR foam Structural Reinforced Reaction Injection molding

Wave geometry:

20 g

30 g

Foaming Simulation of Refrigerator cabinet

	Alidation with experiment	Jo 100 100 100 100 300 100	•
--	---------------------------	--	---

Simulation aided prototyping

Conclusion

Conclusion

Industrial virtual material prototyping via Mathematical concepts

- Interaction with domain experts
- Experimenation
- Model development
- Parameter optimization
- Model validation (numerical simulations simple cases)
- Simulation of real industrial case
- Virtual prototype & experimentation for process optimization (Digital twin)

THANK YOU FOR YOUR ATTENTION

Introduction to Complex Fluids

Ikenna Ireka *(Ph.D.)*

Overview

- Newtonian vs Non-Newtonian (complex) fluids
 - Complex rheological models
 - Generalized Newtonian fluids
 - Viscoelastic fluids
 - Chemorheological fluids (Polyurethane foams)
- The Navier Stokes Equation
- The Navier-Stokes Brinkman Equations

Simple Fluids

https://www.nicepng.com/ourpic/u2q8i1t4u2w7r5y3_water-pouring-png-cup-of-water-png/

Simple vs Complex Fluids

Complex Fluids

Newtonian Fluids

η

is the velocity gradient is the coefficient of viscosity

Table 1.1: Temperature dependent viscosity models		
Reynold's model	$\eta(T) = \eta_0 \exp(-BT)$	
Vogel's model	$\eta(T) = \eta_0 \exp\left(\frac{B}{T - T_0}\right)$	
Arrhenius model	$\eta(T) = \eta_0 \exp(E/RT)$	
Nahme model	$\eta(T) = \eta_0 \exp\left(\frac{T - T_0}{T_0}\right)$	
William-Landel-Ferry (WLF) model	$\eta(T) = \eta_0 \exp\left(\frac{-C_1(T-T_0)}{C_2+T-T_0}\right)$	
Fulcher model	$log_{10}(\eta(T)) = -A + \frac{B \times 10^3}{T - T_0}$	

Stress strain Curves: Simple vs Complex Fluids

The Navier-Stokes Equations

The Navier-Stokes Equations subject to appropriate boundary conditions

- Conservation of mass $\nabla \cdot \vec{v} = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial t} + \vec{v} \cdot \nabla \rho \right)$
- Conservation of linear momentum $\frac{\partial \rho \vec{v}}{\partial t} + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla p + \nabla \cdot T + F$
- Conservation of $\rho C_p \left(\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T \right) = \nabla \cdot (\boldsymbol{\kappa} \nabla T) + \frac{1}{2} (\mu_{mix} \boldsymbol{D} : \boldsymbol{D})$ energy:

43

Constitutive relations

- Newtonian $T = 2\eta D$, with, $D = \frac{1}{2} \left[\nabla v + (\nabla v)^T \right]$.
- Generalized Newtonian $oldsymbol{T}=2\eta(\dot{\gamma})\,oldsymbol{D}.$
 - $\begin{array}{ll} \bullet \quad \text{Power law Model} & \eta = K \dot{\gamma}^{n-1}, \\ & \text{if } n > 1 \end{array} \begin{array}{ll} \text{if } n < 1 & \lim_{\dot{\gamma} \to 0} \eta(\dot{\gamma}) = \infty & \lim_{\dot{\gamma} \to \infty} \eta(\dot{\gamma}) = 0, \\ & \lim_{\dot{\gamma} \to \infty} \eta(\dot{\gamma}) = 0 & \lim_{\dot{\gamma} \to \infty} \eta(\dot{\gamma}) = \infty. \end{array} \end{array}$

• Prandtl-Eyring
$$\eta = \eta_0 \frac{\sinh^{-1}(\lambda \dot{\gamma})}{\lambda \dot{\gamma}}, \quad \lim_{\dot{\gamma} \to 0} \eta(\dot{\gamma}) = \eta_0, \qquad \qquad \lim_{\dot{\gamma} \to \infty} \eta(\dot{\gamma}) = 0.$$

More generalized Newtonian fluids

• Powell-Eyring model
$$\eta = \eta_{\infty} + (\eta_0 - \eta_{\infty}) \frac{\sinh^{-1}(\lambda \dot{\gamma})}{\lambda \dot{\gamma}}, \qquad \frac{\eta - \eta_{\infty}}{\eta_0 - \eta_{\infty}} = \frac{\sinh^{-1}(\lambda \dot{\gamma})}{\lambda \dot{\gamma}}, \qquad \lim_{\dot{\gamma} \to 0} \eta = \eta_0 \text{ and } \lim_{\dot{\gamma} \to \infty} \eta = \eta_{\infty}.$$

• Cross model
$$\frac{\eta - \eta_{\infty}}{\eta_0 - \eta_{\infty}} = \frac{1}{1 + (\lambda \dot{\gamma})^m}, \quad \text{if } m < 1 \qquad \lim_{\dot{\gamma} \to 0} \eta(\dot{\gamma}) = \eta_0 \qquad \lim_{\dot{\gamma} \to \infty} \eta(\dot{\gamma}) = \eta_{\infty},$$

$$\frac{\eta_0 - \eta}{\eta - \eta_{\infty}} = (\lambda \dot{\gamma})^m, \qquad \text{if } m > 1 \qquad \lim_{\dot{\gamma} \to 0} \eta(\dot{\gamma}) = \eta_{\infty} \qquad \lim_{\dot{\gamma} \to \infty} \eta(\dot{\gamma}) = \eta_0,$$

• Sisko model
$$\eta = \eta_{\infty} + K \dot{\gamma}^{n-1}.$$

• Carreau-Yasuda model $\frac{\eta - \eta_{\infty}}{\eta_0 - \eta_{\infty}} = [1 + (\lambda' \dot{\gamma})^c]^{(n-1)/c}$. c = 2 (Carreau Model)