

INTERNATIONAL CONFERENCE ON MODELLING SIMULATION and COMPLEX SYSTEMS, Obafemi Awolowo University, Ile-Ife

Modeling, Simulation and Complex Systems for National development

By
Professor Clement Onime
(onime@ictp.it)
ICTP,
Trieste, Italy

Contents

- Introduction
 - International Centre for Theoretical Physics (ICTP)
- National development
 - Challenges for Scientific research
 - Artificial Intelligence: from Machine Learning to Generative A.I.
- Conclusion

INTRODUCTION

Academic Profile

- Professor of Computer Science,
 Computer Engineering and
 Computational Science
- Co-supervise PhD and MSc students from institutions in U.K, Canada, Mexico, Nigeria, Ethiopia and Italy
- Scientific output and Other contributions
 - Scientific publications
 - e-learning framework
 - INTERNET gateway
 - Development of HPC centres

Research

- Mixed Augmented Virtual Reality Laboratory (MARVLab), UK.
- International Research Team on Data Science, Machine Learning, & Artificial Intelligence.
- High Performance and Super Computing
- Cloud Computing (infrastructure models, trust and security)
- member of IEEE and ACM
- Promoting multidisciplinary research around computing

Biometric Technology, Internet of Things, Data Science, Big Data Analytics, Artificial Intelligence, Mobile Computing, Computer Networking, Information Systems, Internet resources & services, Green Computing, Engineering education: e-learning+ virtual and remote labs, mathematical modeling for engineering and radio/satellite and digital communications systems.

What is ICTP?

- Founded in 1964 by Nobel Laureate Abdus Salam to enhance international cooperation through science
- Combines world class research with a unique global mission of building science capacity in the developing world
- Governed by tripartite agreement between Italy, UNESCO and IAEA

Key areas: Research, Education and Outreach

Training at ICTP

ICTP training programmes: Supporting scientists in all stages of their careers

For more details see https://www.ictp.it/

Training at ICTP

ICTP's international conferences encourage "Brain Gain"

- Provide training and skills to scientists from developing countries
- Organise more than 60 conferences/workshops each year
- Welcome up to 5000 scientists from 145 nations each year
- Attract an additional 1000-2000 scientists/year through hosted activities

ICTP

ICTP visiting scientists: where do they come from?

- More than 170,000 visits since 1970
- 188 countries represented
- In 2020, 27%
 of ICTP visiting
 scientists were
 women

ICTP global Impact

ICTP Testimonials

David Gross, Nobel Laureate in Physics 2004 and Director, Kavli Institute for Theoretical Physics:

"Much good emanates from ICTP. Salam's vision of a facility that couples the doing of first-rate research with advanced scientific training has been overwhelmingly vindicated and validated."

ICTP Testimonials

Stephen Hawking, University of Cambridge:

"Over the years, ICTP has left a deep legacy in performing and promoting outstanding fundamental scientific research. In particular, it has had a major impact supporting science in developing countries."

NATIONAL DEVELOPMENT

Scientific research

- Scientific research is benefiting from the intersection of
 - Scientific (domain)processes
 - Applied mathematics (modelling & numerical analysis)
 - Computing (hardware, algorithms, scaling, performance and Artificial Intelligence)

Addressing national challenges requires scaling problem size and complexities

Some challenges

- All recent global advances (sceintific discoveries)
 in the last 20 years have been powered by the use
 of computational results.
- Some of these came about through the modeling and simulation of complex systems.
- Two key challenges for Science are size and complexity
- How can we as scientists address
 - increasingly bigger problems?
 - increasingly complex problems and domains?

Solution is not bigger computers

Cray T3E

A 1480-processor T3E-1200 was the first **supercomputer** to achieve a performance of more than 1 <u>teraflops</u> running a <u>computational science</u> application, in 1998

Your single cellphone is more powerful than the above supercomputer, harnessing collective computing power is key

Making small computers effective

High Performance Computing derived mainly from quantity Complexity can be addressed by divide-and-conquer applied to task, data and algorithms..

Example: Cluster of Desktops

Each Desktop computer had 1 AMD Athlon (single-core) CPU with 256MB ram

Example of General Purpose Graphics Processing Unit (GPGPU)

- Nvidia Tesla K40M
 - Frequency of 915MHz
 - 2880 processing cores
 - 12GB Internal memory
 - Interface standard: PCI Express 3.0x16
 - Power Consumption:235W
 - 1.43 Tflops (peak, DP)
 - 4.29 Tflops (peak, SP)

Exascale computing

Item	Size in computing	Commercial size
Kilobyte	2 ¹⁰ = 1024	$10^3 = 1000$
Megabyte	$2^{20} = 1024^2 = 1,048,576$	106 = 1,000,000
Gigabyte	$2^{30} = 1024^3 = 1,073,741,824$	$10^9 = 1,000,000,000$
Terabyte	2 ⁴⁰ = 1024 ⁴ = 1.09951162778e+12	$10^{12} = 1,000,000,000,000$
Petabyte	$2^{50} = 1024^5 = 1.12589990684 \times 10^{15}$	10 ¹⁵
Exabyte	$2^{60} = 1024^6 = 1.15292150461 \times 10^{18}$	10 ¹⁸
Yottabyte	$2^{70} = 1024^7 = 1.18059162072 \times 10^{21}$	10 ²¹
Zettabyte	$2^{80} = 1024^8 = 1.20892581961 \times 10^{24}$	10 ²⁴

Exaflop = 1 million trillion = 1 million million computations / second

Artificial Intelligence

Example - Excelling at playing the game of chess

Symbolic Al

"Let us sit down with the world's best chess player and put his/her knowledge into a computer program"

Mathematical/Statistical Al

"Let us simulate all the different possible moves and the associated outcomes at each single step and go with the most likely to win"

Machine Learning Approach

"Let us show millions of examples or real life and simulated games (won and lost) to the program, and let it learn from experience"

From AI to ML

- Artificial Intelligence (AI) is a branch or Computer Science that uses algorithms and techniques to mimic human intelligence
- Machine Learning (ML) is one of several AI techniques for sophisticated cognitive tasks

Machine Learning paradigm

 Machine Learning is a particularly interesting technique because it represents a paradigm shift within AI

Traditional AI techniques

- Static hard-coded set of steps and scenarios
- Rule Based expert knowledge
 - No generalization handling special cases is difficult

Machine Learning

- Dynamic evolves with data, finds new patterns
- Data driven discovers knowledge
- Generalization adapts to new situations and special cases

23

A.I and Deep Learning

(Neural Networks)

Techniques	Accuracy	Detection	False
Techniques	Accuracy	Rate	Alarm
		(Precision)	Rate
Support Vector	94.65%	85.45%	5.2%
Machine			
(SVM)			
Artificial	99.71%	99.68%	0.12%
Neural			
Networks			
(ANN)			
Bayesian	97.52%	97.04%	2.50%
Network			
K- Nearest	97.15%	96.84%	2.88%
Neighbour			
(KNN)			
Fuzzy Logic	95.2%	86.84%	1.15%
Based System			
Decision Trees	97.93%	98.52%	2.19%
Logistic	94.7%	77.8%	2.9%
Regression			

[&]quot;A Comparative Analysis of Various Credit Card Fraud Detection Techniques" by

Yashvi Jain, NamrataTiwari, ShripriyaDubey, Sarika Jain International Journal of Recent Technology and Engineering (IJRTE)ISSN: 2277-3878, Volume-7 Issue-5S2, January 2019

Image from "Deep Learning in Computer Vision" by Xiaogang Wang

Advances in A.I. applications

Trend is towards a blackbox approach:

Generative A.I.

- Able to generate "new" content: images, videos, text, essays, audio, video, etc..
 - Must be trained
 - An A.I. model is only as good as it's training data.

Conclusion

- Modeling and simulation is the bedrock of Scientific Computing and offers non-trivial opportunities for Education and National development.
- Harnessing the available computing power can help us simulate increasingly complex systems and address bigger complex problems.

Thank you!!!

The nation that outcomputes outcompetes

ICAWMSCS Conference in 5 minutes

- 2-day conference: Amalgamation of applied mathematics, scientific domains (*Physics*, *Chemistry*, *Engineering*, *Biology*) and computing.
- High number number of abstracts
 - Over 85% of submitted abstracts accepted
 - 10 minutes for each presenter
 - Some will be published
 - Upload your completed presentations via registration portal or https://dbox.ictp.it/index.php/s/ICAWMSCS-UPLOAD
 - Student Prices
- Next edition in 2025...