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Introduction
• Energy powers our movements, industries, and homes.

• Increasing energy demand due to population growth and economic
development leads to reliance on fossil fuels, causing climate change.

• Global warming and rising fuel prices drive the shift towards renewable energy
sources like solar, wind, and hydropower.

• Solar energy is crucial for generating electricity and powering various
applications with zero greenhouse gases.

• Challenges: Weather variability, energy storage issues, and overheating reduce
efficiency and battery lifespan.
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Photovoltaic Solar Panels      3



Nanofluids as a solution to solar panel cooling     4

• Nanofluids enhance thermal conductivity and heat transfer performance.

• Hybrid nanofluids combine multiple nanoparticle types for superior

thermal conductivity.

• Tri-hybrid nanofluid achieve remarkable heat transfer properties and are

promising for cooling systems in various devices, including solar panels.

• Challenges: Nanoparticle stability, agglomeration, and optimizing

thermophysical properties

4



Tri-Hybrid Casson Nanofluids for Solar Panel 
Heat Transfer

• 1. Combines Casson Fluid Properties: Shear-thinning behavior improves flow 
under high shear rates.

• 2. Enhanced Thermal Conductivity: Multiple nanoparticles (e.g., metal oxides, 
carbon nanotubes) significantly boost heat transfer.

• 3. Improved Efficiency: Better heat absorption and dissipation enhance solar 
panel performance.

• 4. Optimal Temperature Regulation: Maintains ideal operating temperatures for 
photovoltaic cells.
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The choice of Nanoparticles

• The three nanoparticles includes Titanium dioxide,        , Carbon 

Nanotubes (CNTs), and Silicon di oxide,       . 

• The base fluid is Casson fluid 

• Why these three Nanoparticles?

- : enhances thermal conductivity,

- CNTs : promote efficient photon absorption,

- : aids in emission control.
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What is Tri-Hybrid Casson Nanofluid?

Suspension of Three nanoparticles in  Casson fluid
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Application of Tri-hybrid Casson nanofluid 
on solar panels



Motivation and Research gap of  this study

•Motivation:

Researchers aim to improve convective heat transfer rates in solar
panels using Tri-Hybrid Casson nanofluids, which are crucial for
enhancing photovoltaic efficiency.

• Research Gap:
While previous studies have explored the effects of various properties
like thermal conductivity, viscosity, and density of Tri-Hybrid
nanofluids on solar panel performance, limited research has been
conducted on specific heat capacity, especially considering the variable
temperature-dependent aspect.
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Aim and Novelty of the work
•Aim:
This research aims to bridge this gap by investigating the modeling impact

of temperature-dependent specific heat capacity of Tri-Hybrid Casson

Nanofluid on solar panel performance.

•Novelty:
The novelty of this work lies not only in incorporating the variable

temperature-dependent specific heat capacity but also in its focus on a

unique Tri-hybrid Casson nanofluid formulation with promising properties

for solar panel applications.
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Objectives
The specific objectives of this work are to:

1. formulate a model of the governing Partial Differential Equations (PDEs)
and transform them into a system of Ordinary Differential Equations
(ODEs) using similarity techniques.

2. solve the ODEs numerically using the Runge-Kutta method of the 4th
order alongside the shooting method with the aid of Maple 18.0 software.

3. investigate the effect of the thermophysical parameters of Tri-Hybrid
nanofluid on the skin friction, Nusselt number, and Sherwood number,
also, on the velocity, temperature and concentration profile.
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Flowchart of the study 12



Description of the problem
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Assumptions

The flow of electrically conducting 2D Tri-Hybrid 
Casson Nanofluid on exponentially shrinking/stretching 
surface.

It is considered by incorporating:

•Variable temperature-dependent specific heat capacity,

• magnetic field, and

• thermal radiation. 
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Mathematical modelling of the problem

• (1)

• (2)

• (3)

• (4)
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Boundary conditions                        

• at y=0                 (5)

• as                       (6)

• (7)

• (8)

• (9)
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Properties of Tri-hybrid nanofluids          17

• The properties of Tri-hybrid nanofluids are defined by [22,23] as:

• (10)

• The temperature dependent specific heat capacity of Tri-hybrid nanofluid is given as:

• (11)
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Temperature-dependent Specific heat capacity    18

• where the variable temperature dependent specific heat capacity of base fluid 
can be given as:

• (12)

• (13)

• (14)

• where;

• is the variable temperature-dependent specific heat capacity parameter

( ) ( ) ( ) −+= TTcCTC
bfpbfp 1)( 

( ) ( )  )()(1)(  −+= TTcCTC wbfpbfp

( ) ( )  )(1)(  +=
bfpbfp CTC

)( −= TTc w



Similarity Techniques

The similarity solution of equations (1) –(6) is achieved by defining the
independent variable , a stream function , in terms of dependent variables

,         , and         as:

(15)

Equation (1) is satisfied automatically
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Coupled Nonlinear Ordinary Differential Equations

(16)

(17)

(18)
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The initial/boundary conditions

at                   (19)

(20)
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The values of the unknowns
The resulted thermophysical parameters
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The skin friction, Nusselt number, and Sherwood number                              
23

The skin friction, Nusselt number, and Sherwood number are the 
physical quantities of interest and are given as:

• (21)
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• After differentiation equation (21) becomes:

• (22)
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Numerical analysis                          25

• Importance of Numerical Methods:

Essential for scientific and engineering disciplines

Analytical solutions often elusive for complex Boundary Values Problems

• Challenges with Boundary Values Problems:

Traditional analytical techniques often inadequate

• Common Numerical Methods:

- Fourth-order Runge-Kutta method

- Runge-Kutta Fehlberg 45 (RK45) method

- Adams-Bashforth method

- Finite difference method

- Finite element method



Shooting Method

•Shooting Method:

- Robust approach for coupled nonlinear BVPs

- Converts BVPs to initial value problems (IVPs)

- Iteratively refines guessed initial conditions

- Ensures solution meets boundary constraints

• 26



Numerical method cont’d

The above coupled nonlinear third-order ordinary differential equations are 
reduced into a system of first order ordinary differential equations (ODEs) 
by letting:

(23)

Substituting the equation (23) into equations (16)-(20) give the required 
system of first order ODEs as:
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• (25)
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Numerical method cont’d

• ()

The shooting method is used to guess the unknowns          and    until 

the boundary conditions               and        are satisfied. The resulting 

differential equations are solved numerically using the 4th order 

Runge-Kutta method.    
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Results and Discussions                 30

Table 1: The Thermophysical properties of Casson fluid, and 

nanoparticles, (          ,             and CNTs) [37].

Thermophysical

Properties

Casson

fluid CNTs

Thermal conductivity,

(W/mk)

0.6376 8.9568 36 6600

Specific Heat Capacity,

( )

4175 686.2 765 425

Density, (Kg/ ) 989 4250 3970 2600

2TiO
2SiO

796 NaOHC

11. −− kkgJ
3m

2TiO
2SiO



Results of Numerical method                 31

In order to validate the correctness of this study the values of          ,

, and          were compared with the work of [1] and excellent 
agreement was established.

)0(f 

)0( − )0(g−

Table 2: Comparison with [1] for Pr = 6.2,                                              , 

Work of [1] Present work Work of [1] Present work Work of [1] Present work

0.1 -1.28180857 -1.28124179 0.25373483 0.25317044 0.37525393 0.37535393

0.2 -1.28180857 -1.28124179 0.25191726 0.25194002 0.20422841 0.29314672

0.3 -1.28180857 -1.28124179 0.25007701 0.25000529 0.03660735 0.03761834

0.4 -1.28180857 -1.28124179 0.24821431 0.24822423 -0.1275704 -0.12762371

0.5 -1.28180857 -1.28124179 0.24632921 0.24632848 -0.2882678 -0.28923355

1.0=BN===== ,0uSScRa 

TN )0( −)0(f  )0(g− )0(g−)0( −)0(f 



Result and discussion 32

Table 3: Impact of Variable Specific heat capacity,       , on           ,            ,and 

0.05 - 0.146139249388517 1.52528741156937 - 0.580452428264102

0.1 - 0.146139249388215 1.56372271766941 - 0.614171468055997

0.5 - 0.146139249387869 1.83449564070648 - 0.852057072534243

1.0 - 0.146139249387676 2.10666386278441 - 1.09166714124498

Slope 7.84369E-13 0.612852162 -0.538890398
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Result and discussion

• 33

Table 4: Effect of Thermal Radiation,          , on             ,                  , and 

0.5 - 0.146139249392372 1.25782516007649 - 0.348803216534943

1.0 - 0.146139249399646 1.06827684439477 - 0.185589731477336

3.0 - 0.146139249462864 0.703477537747997 0.128807741903066

5.0 - 0.146139249456675 0.547066217410380 0.268165579581688

Slope -1.59883E-11 -0.153819157 0.133488189

Ra

)0(f  )0( − )0(g−Ra

)0(f  )0( − )0(g−



Result and discussion

• 34

Table 5: Effect of Casson parameter,    , on           ,               and 

0.5 - 0.146139249388517 1.52528741156937 - 0.580452428264102

1.0 -0.199721438431961 1.53685311826791 - 0.597481889444215

3.0 - 0.273925515780488 1.54822224925624 -0.623153963390784

5.0 - 0.297521408058996 1.55105959357199 -0.631090133375942

Slope -0.0318084 0.005208544 -0.010734733
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Effect of variation of thermophysical parameters on 
temperature profile                                    35

Figure 2: Temperature profile varying 



Effect of variation of thermophysical parameters on 
temperature profile                                    36

Figure 3: Temperature profile varying Ra



Effect of variation of thermophysical parameters on 
temperature profile                                                      37

Figure 4: Temperature profile varying Ha



Effect of variation of thermophysical parameters on 
velocity profile                                                      38

Figure 5: Velocity profile varying Ha



Effect of variation of thermophysical parameters on 
velocity profile                                                      39

Figure 6: Velocity profile varying    



Effect of variation of thermophysical parameters on 
Concentration profile                                                40

Figure 7: Concentration profile varying BN



Effect of variation of thermophysical parameters on 
Concentration profile                                                41

Figure 8: Concentration profile varying   TN



Conclusion
• Explored Tri-hybrid Casson nanofluids for improved solar panel

cooling.

• Integrated temperature-dependent specific heat capacity into
thermal modeling.

• Found significant potential for optimizing heat transfer and
enhancing efficiency.

• Insights support the development of more effective and sustainable
solar panels.
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Future work

•Experimental validation and diverse nanoparticle 
analysis recommended.

•This research paves the way for advanced solar 
energy systems with extended lifespan and 
reliability.
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