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Introduction

 Energy powers our movements, industries, and homes.

* Increasing energy demand due to population growth and economic
development leads to reliance on fossil fuels, causing climate change.

» Global warming and rising fuel prices drive the shift towards renewable energy
sources like solar, wind, and hydropower.

« Solar energy Is crucial for generating electricity and powering various
applications with zero greenhouse gases.

« Challenges: Weather variability, energy storage issues, and overheating reduce

efficiency and battery lifespan.
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Photovoltaic Solar Panels .
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Nanofluids as a solution to solar panel cooling .
* Nanofluids enhance thermal conductivity and heat transfer performance.

* Hybrid nanofluids combine multiple nanoparticle types for superior
thermal conductivity.

* Tri-hybrid nanofluid achieve remarkable heat transfer properties and are
promising for cooling systems In various devices, including solar panels.

* Challenges: Nanoparticle stability, agglomeration, and optimizing
thermophysical properties



Tri-Hybrid Casson Nanofluids for Solar Panel
Heat Transfer

* 1. Combines Casson Fluid Properties: Shear-thinning behavior improves flow
under high shear rates.

« 2. Enhanced Thermal Conductivity: Multiple nanoparticles (e.g., metal oxides,
carbon nanotubes) significantly boost heat transfer.

« 3. Improved Efficiency: Better heat absorption and dissipation enhance solar
panel performance.

* 4. Optimal Temperature Regulation: Maintains ideal operating temperatures for
photovoltaic cells.
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The choice of Nanoparticles

» The three nanoparticles includes Titanium dioxide, 10, | Carbon

Nanotubes (CNTSs), and Silicon di oxide, SiO,.

* The base fluid 1s Casson fluid

* Why these three Nanoparticles?
- TiO, : enhances thermal conductivity,
- CNTs : promote efficient photon absorption,
- Si0, : alds In emission control.
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What is Tri-Hybrid Casson Nanofluid?

Casson fluid

Silicon dioxide

Titanium dioxide Carbon Nanotubes

{

Tri-hybrid Casson Nanofluid

Suspension of Three nanoparticles in Casson fluid
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APPLICATION OF TRI-HYBRID CASSON NANOFLUID
ON SOLAR PANELS
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Motivation and Research gap of this study

Researchers aim to improve convective heat transfer rates In solar
panels using Tri-Hybrid Casson nanofluids, which are crucial for

enhancing photovoltaic efficiency.

While previous studies have explored the effects of various properties

like thermal conductivity, viscosity, and density of Tri-Hybrid
nanofluids on solar panel performance, limited research has been

conducted on specific heat capacity, especially considering the variable
temperature-dependent aspect.
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AIM AND NOVELTY OF THE WORK
e AIM:

This research aims to bridge this gap by investigating the modeling impact
of temperature-dependent specific heat capacity of Tri-Hybrid Casson
Nanofluid on solar panel performance.

 NOVELTY:

The novelty of this work lies not only In incorporating the variable
temperature-dependent specific heat capacity but also in its focus on a
unique Tri-hybrid Casson nanofluid formulation with promising properties

for solar panel applications.
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OBJECTIVES
THE SPECIFIC OBJECTIVES OF THIS WORK ARE TO:

1. formulate a model of the governing Partial Differential Equations (PDES)
and transform them into a system of Ordinary Differential Equations
(ODESs) using similarity techniques.

2.s0lve the ODEs numerically using the Runge-Kutta method of the 4th
order alongside the shooting method with the aid of Maple 18.0 software.

3.Investigate the effect of the thermophysical parameters of Tri-Hybrid

nanofluid on the skin friction, Nusselt number, and Sherwood number,
also, on the velocity, temperature and concentration profile.
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Description of the problem

Tri-nanoparticles -
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Assumptions

The flow of electrically conducting 2D Tri-Hybrid

Casson Nanofluid on exponentially shrinking/stretching
surface.

It IS considered by Incorporating:

*Variable temperature-dependent specific heat capacity,
» magnetic field, and

* thermal radiation.
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Mathematical modelling of the problem
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Boundary conditions
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Properties of Tri-hybrid nanofluids

 The properties of Tri-hybrid nanofluids are defined by [22,23] as:
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* The temperature dependent specific heat capacity of Tri-hybrid nanofluid Is given as:
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Temperature-dependent Specific heat capacity i

« where the variable temperature dependent specific heat capacity of base fluid
can be given as:

. (pCp )bf Cr) — (mp )bf [1+ C(T _Too )] (12)

Y (13)
(eC, ) (M) =(eC,) [R+c(T, —T.)OGN]

Y (14)

(oC, ), (M) = (o, ), [+ se6n]
* where;
o=c(T, —T_)

* IS the variable temperature-dependent specific heat capacity parameter



Similarity Techniques

The similarity solution of equations (1) —(6) iIs achieved by defining the
Independent variable 77, a stream function v, In terms of dependent variables

f(@) ,0() ,and 9(n) as:
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Equation (1) Is satisfied automatically
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Coupled Nonlinear Ordinary Differential Equations
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The Initial/boundary conditions

f(0)=S,, f'(0)= a+/1(1+ij (0),6'(0) =-Bi[1-6(0)]

at =0 (19)
#(0) =1+Yg'(0)

f'(n) > 0,8(n) > 0,0(n7) >0 (20)
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The values of the unknowns

The resulted thermophysical parameters
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The skin friction, Nusselt number, and Sherwood number

23

he skin friction, Nusselt number, and Sherwood number are the
physical quantities of interest and are given as:
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« After differentiation equation (21) becomes:
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Numerical analysis 25
* Importance of Numerical Methods:

Essential for scientific and engineering disciplines
Analytical solutions often elusive for complex Boundary Values Problems
* Challenges with Boundary Values Problems:
Traditional analytical techniques often inadequate
« Common Numerical Methods:
- Fourth-order Runge-Kutta method
- Runge-Kutta Fehlberg 45 (RK45) method
- Adams-Bashforth method
- Finite difference method
- Finite element method



Shooting Method

* Shooting Method:
- Robust approach for coupled nonlinear BVPs

- Converts BVPs to initial value problems (IVPs)
- Iteratively refines guessed initial conditions

- Ensures solution meets boundary constraints
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Numerical method cont’d

The above coupled nonlinear third-order ordinary differential equations are

reduced into a system of first order ordinary differential equations (ODES)
by letting:

/ / /

/ /
f=n,f'=n =n,f"=n,=n, f"=n, =n,,0=n,0'=n. =n,,0"=n, =n,,g=n,

/

S (23
0 =n =Ny, J =Ny =N,

Substituting the equation (23) into equations (16)-(20) give the required
system of first order ODEs as:
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Numerical method cont’d

" n,(0)=S,,n,(0) =a+2(1+éja, n,(0) =a,n.(0) =b,n,(0) =—Bi[l—b]

n,(0) =1+Y¥c,n,(0) =c

The shooting method Is used to guess the unknowns a,b, and ¢ until
the boundary conditions n.(=).n(=), and n(=) are satisfied. The resulting
differential equations are solved numerically using the 4t order

Runge-Kutta method.
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Results and Discussions 30

Table 1: The Thermophysical properties of Casson fluid, and

nanoparticles, ( , and CNTs) [37].

Thermophysical Casson

Properties fluid TiO, Si02 CNTs
C,H,NaO,

Thermal conductivity, [SAY4S 8.9568 36 6600

Specific Heat Capacity, [N 686.2 765 425

Density, (Kg/ ) 989 4250 3970 2600




Results of Numerical method 31
In order to validate the correctness of this study the values of f"(0),

~0'(0), and ~9© were compared with the work of [1] and excellent
agreement was established.

Table 2: Comparison with [1] for Pr =6.2,

Work of [1]  Present work Work of [1] Present work Work of [1] Present work
£7(0) 70  —o'(0) -—0O® = —g  —gO
B -1.28180857 -1.28124179 0.25373483 0.25317044 0.37525393 0.37535393
-1.28180857 -1.28124179 0.25191726 0.25194002 0.20422841 0.29314672
-1.28180857 -1.28124179 0.25007701 0.25000529 0.03660735 0.03761834
-1.28180857 -1.28124179 0.24821431 0.24822423 -0.1275704 -0.12762371

-1.28180857 -1.28124179 0.24632921 0.24632848 -0.2882678 -0.28923355




Result and discussion 3

Table 3: Impact of Variable Specific heat capacity, ,0n

f7(0)  —6'(0) — g’(0)

- 0.146139249388517 1.52528741156937 - 0.580452428264102
- 0.146139249388215 1.56372271766941 -0.614171468055997
- 0.146139249387869 1.83449564070648 - 0.852057072534243
- 0.146139249387676 2.1066638627/8441 -1.091667/14124498

7.84369E-13 0.612852162 -0.538890398




Result and discussion
Table 4: Effect of Thermal Radiation,

f(0)
- 0.146139249392372

- 0.146139249399646
- 0.146139249462864
- 0.146139249456675

-1.59883E-11

—0'(0)

1.25782516007649
1.068276844394 77
0.703477537747997
0.547066217410380

-0.153819157
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—-g'(0)

- 0.348803216534943
- 0.185589731477336
0.128807741903066
0.268165579581688

0.133488189



Result and discussion

Table 5: Effect of Casson parameter, , on

f"(0) —0'(0) _ g'(0)

- 0.146139249388517 1.52528741156937 -0.580452428264102
-0.199721438431961 1.53685311826/7/91 -0.597481889444215
- 0.273925515780488 1.54822224925624 -0.623153963390/84
- 0.297521408058996 1.55105959357199 -0.631090133375942

-0.0318084 0.005208544 -0.010734733
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Effect of variation of thermophysical parameters on
temperature profile 2
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Effect of variation of thermophysical parameters on
temperature profile 36
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Effect of variation of thermophysical parameters on
temperature profile 37
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Effect of variation of thermophysical parameters on
velocity profile a8
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Effect of variation of thermophysical parameters on

velocity profile 2
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Effect of variation of thermophysical parameters on
Concentration profile 0
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Effect of variation of thermophysical parameters on
Concentration profile "
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Conclusion

. Ex;la_lored Tri-hybrid Casson nanofluids for improved solar panel
cooling.

* Integrated temperature-dependent specific heat capacity Into
thermal modeling.

* Found significant potential for optimizing heat transfer and
enhancing efficiency.

* |nsights support the development of more effective and sustainable

solar panels.
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Future work

* Experimental validation and diverse nanoparticle
analysis recommended.

* This research paves the way for advanced solar
energy systems with extended lifespan and
reliability.
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