Foryins Buoyancy-driven flows common in Nature
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1 We cannot hope to replicate in a
laboratory every aspect of such systems

Rayleigh-Benard convection
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a = (isobaric) coefficient of thermal expansion

v=kinematic viscosity

k = thermal diffusivity
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RBC near onset: For the most part, a completely
understood problem*™

*subject to some discussion
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RBC at very high Ra:

Thermal boundary layers at the upper and lower walls are highly

stressed regions giving rise to “plumes.”
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The temperature gradient is
all at the walll At high Rain

experiments the boundary

layer is typically of order 100
micrometers.

Plumes in water

Sparrow, Husar & Goldstein J.
Fluid Mech. 41, 793 (1970)



The normalized heat transport: Nusselt number

kAT)l

NuQ( 7

Q = applied heat flux; k = fluid thermal conductivity
Nu = f(Ra; Pr; T ...)

At “asymptotically” high Ra:

Nu = 0073Ra3 Willem Malkus, Ed Speigel
Nu=CPr /4 [Ra/log(Ra)3]1/2 Bob Kraichnan
1/5 . Yy
3/2 3/2 Jack Herring (with input from
Nu =D |Ra / ln(Ra) / ] Busse, Howard, Roberts,

Stewartson, Malkus, eftc...)



Plausibility of scaling exponent 1/2

Convert gravitational potential energy into turbulent kinetic energy
2
Ap gH~ pu
u~val TgH

From the equations for the mean temperature difference the transport of heat by
turbulent fluctuations is

q =pCpub

involving the correlation between vertical velocity fluctuations and fluctuations in
temperature which we take to be 0~ AT

Assuming that the contribution of molecular transport can be ignored (essentially

no diffusive boundary layers) we can set

- KAT
C,uf~Nu-———
pCpub~Nu-—

Using the scales for vertical velocity and temperature fluctuations we then have
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Plausibility of a 1/3 power law for Nu vs Ra (Malkus, Howard, Priestley)
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At very high Ra the temperature gradient is all at
the wall, across boundary layers of thickness 6

1. Heat flux across boundary layers: g= ku?ST
2. Rayleigh defined on the boundary layers:
_ gaATs’
Raj="—"—
VK

and assume that Ra, reaches marginal stability value
Ra

3. Using (1) for g: Nu= % (H/d)

2Ra_vkK 1
gaAT

4. Then from (2): 6=

5. Substituting 6 from (4) into (3) and using (2):

Nu = [Ra/(16Ra_)]"s ~ CRa'




One caveat however ....

T

However, from Howard (1962):The main point is that the stability of a boundary layer at the
bottom of a semi-infinite region, which is essentially our problem for large R, is really rather
different from the ordinary case of a finite layer. The critical Rayleigh number for marginal

stability, based on the boundary layer thickness, is in fact zero — such layers in an infinite
region are always unstable. ’
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Instability of a Thermal Stokes Layer

Joseph J. Niemela and Russell J. Donnelly

Department of Physics, University of Oregon, Eugene, Oregon 97403
{Received 21 March 1986)

We examine experimentally the stability of a Stokes layer in a fluid near a boundary whose tem-
perature is modulated as Tocoswr. We define an appropriate Rayleigh number for the problem and
determine its critical value. Increased stabilization is observed to accompany a reduction in the
Prandtl number. We observe hysteresis effects near the critical Rayleigh number, including a dou-

ble hysteresis loop, which appear qualitatively similar to recent predictions of Roppo, Davis. and
Rosenblat.

PACS numbers: 47.20.Bp, 47.25.Qv
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Ras =

Aninverse Nu-1: AT = (T (t)) — (T,(t)) = 0 in absence of convection



AT (mK)
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Marginally stable boundary layers!

T T T T
| Ra, = 122
m@oomom% // .
oy
Ooo
(o)
5 %00, E
(o}
Ooo
ooo
— Oooo —
(e}
(o}

] 1 1 1 j

0 S0 100 150 200 250
' Ra

incompressible fluids Keter, Jerusalem

Hall. P. 1985 “Instability of time-periodic flows” NASA contract report

no. 178009 & private communication

J. B. Swift and P. C. Hohenberg, 1987 “Modulated convection at high
frequencies and large modulation amplitudes” Phys. Rev. A 36, 4870
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This Ra. is an order of magnitude smaller than for normal fluid layers ~ 10°.

Gives a coefficient of 0.08 in our simple argument for 1/3 scaling -we’ll see this later



How to get high Ra (and lots of it)
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Ra ~ (p?aC.). Raincreases as p? away from critical point and as aC, in its vicinity

12 orders of magnitude of Ra, all in turbulent regime (scaling) for H sufficiently large



Cryocooler
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KR Sreenivasan, JJN,
Atmosphere 14 (5), 826, 2023
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Using the Stokes layer marginal stability
value for Ra. we have Nu= 0.08Ra'?
shown in the plot above

Nu/f(Ra)

f(Ra) = 0.06 (Ra*?In(Ra)*?)"*




What turbulent convection looks like:
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After L. kadanoff, Physics Today 2001

“1GURE 1. Photographs of thermals rising from a heated horizontal surface

Herring: “The physical picture of free boundary convective process predicted by the
model is that of a large-scale motion dominating the central region between the
conducting plates. This large-scale motion sweeps with it the temperature fluctuation
field whose main variances occur in a thin boundary layer of vertical extent 1/Nu. The
horizontal scale of both the dominant motion and the temperature fluctuation field is
comparable to the distance between the conducting plates.”

This describes well the experimental observations with rigid boundaries

The Biot number associated with copper plates at low temperatures is very
low: Ideal plume production is not impeded by the apparatus



An aspect ratfio unity cell for maximizing the mean wind
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Measurement of the large scale circulation
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The mean wind and its reversals
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Geomagnetic polarity reversals: range of time scales~ 10°-10° years.
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Medium energy solar flares owe their
duration to turbulent convective motions in
the convective zone of the sun which shuffle
footprints of the magnetic coronal loops
(Parker, 1994).

Reuven Ramaty High Energy Solar
Spectroscopic Imager (RHESSI)

Comparison of the duration of single-direction wind in RBC experiments to the
duration of solar flares observed by RHESSI
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Turbulent heat transfer Il

advection-diffusion equation

oT oT o°T
—+U, =K
ot 7 Ox ; Ox ,0x

Decomposition and averaging over fluctuations yields for the vertical heat flux

= eor
q; =cp | Ouy - K—
OX,
— oT é convenient definition treating turbulence as a diffusive
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Measuring an “effective thermal diffusivity”
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Simulations in a Cube (Ra=108)

<u h> / Uf
0.20

0.14

0.08

0.02

(c)
N. Foroozani, JIN, V. Armenio, and K. R. Sreenivasan, Phys. Rev. E 90, 063003 (2014)
N Foroozani, JIN, V Armenio, KR Sreenivasan, Physical Review E 95 (3), 033107 (2012)



Application to Daya and Ecke’s question: Does container shape affect
rms statistics in the bulk? (Daya and Ecke [Phys. Rev. Lett. 87, 184501 (2001))
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Phys. Rev. E 90, 063003 (2014).

The clue is shown in the simulations for a cube!



Re-orientations of the Large Scale Flow in a Cube, Ra=108
Transient states in between,
parallel to side wall

Top view
8 discrete flow states in total P

N. Foroozani, J. J. Niemela, V. Armenio, and K. R. Sreenivasan Phys. Rev. E 95, 033107 (2017)
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What signals would look like to

experiments....

270"
(67/4)

Horizontal plane /

at mid-height e ’ 1%300
(5m/4) (T)
0.5 | P4(m) —— P8(m)
L
-0.5 1 4 s 4 1 \ 1 i n i i 1 ] 1 1 i | 1 1 i |
0.5 | P6(m) —— P2(m)
vu, T i B
i m anﬁw M owmE M
-0.5 h P ; . ; ; A T A T M T
0 200 200 600 800 1000 1200
t/FI‘eddy

45°

" (n/d)

N 900

(n/2)

I <

(3n/4)

72/19



Adding “2D” and 3D roughness elements

Grooves (8) parallel to side wall!
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Pyramids
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Grooves

Hydrodynamically smooth
Pyramids

-0.25

Hydrodynamically rough (same configuration as for smooth)
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Facilities located at Elettra Synchrotron Laboratory, Trieste
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