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Abstract

Chemical species undergoing spontaneous reactions and temperature
oxidation of materials are useful In explosion safety, propulsion

detonation and chemical synthesis. Thus, this study considers the
dynamics of temperature oxidation of a two-step exothermic
combustion and thermal ignition in a concentric isothermal cylinder

with diverse boundary constraints. With constant thermal reactant
conductivity and diffusion, a time-dependent partial derivative model Is
developed to give Insight Into the chemistry of t
reaction, pre-exponential factor, Arrhenius Kkinet

he branch chain
ic, and critical

behaviour of the system. A finite semi-discretization ©
provides a numerical solution to the model. An Investigation is carried
out on the various boundary conditions impact on the thermal
distribution, stability and ignition of the homogenous species reactant.

Ifference method



Model Assumptions

Consider the chemistry of the branch-chain explosion model for reactant diffusion
at rest without pre-mixture of combustible species in an indefinite concentric
cylinder. An exothermic irreversible reaction occurs in a device subject to
asymmetric constraints, mixed type-one constraints, and mixed type-two
constraints with Arrhenius exponential approximate and activation energy.

a=r/r » Dimensionless coordinate

b=r1/r; Ratio of radii and cylinder




Mathematical Equation
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the corresponding initial constraints is:
D("T_ D) = o, (5}

the applicable different concentric cylinder boundary constraints are given as Okoya [], Salawu
and Okoya [|:

Case A: Asymmetric constraints ¢(r,f) = ¢, and ¢(rz, ) = @2,

o raD) =0, (6)

Case C: Mixed type-II constraints a—?(rlﬂ = 0 and a—?(?'g; t)+ Bo(ry, 1).
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Case B: Mixed type-1 constraints ¢(r,#) = ¢, and



Model Transformation
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Utilizing equation (7) on equation (4) along with the initial and boundary constraints (5) and
(6], the invariant dimensionless model is obtained as:

% = gjf i f—% + 31 + o) "exp (l : ﬁd) =AML 4+ &) "exp (l?:“;eﬁ') — yid, (8)
the initial constraint gives:
e, 0) =iy, (9)
the corresponding bound ary constraints resulted to:
Case A: Asymmetric constraints (e, f) = £ and J(1,1) = (,
Case B: Mixed type-l constraints J(c,f) = £ and %[l,ﬂ = 1, (10)

: . N i :
Case (U Mixed type-I1 constraints a—t[r:,f] = 0 and a—t[l,f] = Bed(1,4) = 0.
r r



Numerical Solution

The boundary value partial derivative gquasilinear model (8) to (10) is solved via a finite differ-
ence semi-discretization line method as demonstrated by [Burden and Douglas-Faires, Salawn
and Okoyal. A h parts spatial range 0 < v, = 1 partition is done to allow grid points
i = A —1),1 = ¢ =< h+1 and a grid size Ar = 1/h. A time space f is assumed, where
0 = 4 = N, and N=1,2,3..... Approximation of the second-order central finite differences
(2 N2)) is carried out for the spatial and time derivatives of the equations (8) to (10). Hence,
the discretization of the two-step combustion model becomes
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the inital constraint gl ves
9. = 95,1 <i<h-+ 1. (13)
the boundary constraints are describe as:
Clase A Asvmmetric constraints «; = £ and 1 = (,
Case B: Mixed type-l constraints ; = £ and ), = 0, (14)
Case C: Mixed type-I1 constraints «; = 0 and 3}, + Bidy, 1 = 0.

A Maple solver with an embedded finite difference method 1s used to computationally solve the
model, and the solution outcomes are graphically expressed.



Results and Discussion
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