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Abstract

Tuberculosis (TB) is a global health concern, a�ecting both humans and animals. This paper
provides a dynamic model to analyze the complicated dynamics of tuberculosis transmission,
taking into account human-animal interactions and a saturated incidence rate with seasonal
changes. Furthermore, the model accounts for the e�ciency of measures targeted at reducing the
spread of tuberculosis (TB). This study intends to give insights into the intricate interplay
between TB transmission patterns, seasonal changes, and the e�cacy of control measures by
combining epidemiological concepts with ecological dynamics. The study uses simulation and
analysis to support targeted intervention techniques and policy decisions for reducing tuberculosis
transmission in a shared human-animal habitat. When both control measures are taken, the
alpha parameter, which represents awareness among the general public, increases, the KEa

parameter, which represents e�cacy of drugs, increases, and the beta and b parameters decrease,
and the population of infectious individuals decreases vj = 0,R0 = 2.269426314, when
vj = 0.5, ba = 0.05 and βh = 0.04,R0 = 0.575348645 and when
v1 = 1.1, v2 = 1.5, ba = 0.05 and βh = 0.001,R0 = 0.001144038597). It is seen that increased
awareness among the general public and the e�cacy of therapy will subsequently prevent cases of
infection at the end of the control program. It is concluded that public awareness and the
e�cacy of therapy should be incorporated into the control program for an optimal control
strategy for TB infection to be curtailed in the hosts.
Keywords: Seasonal variations, TB spread, diverse populations, interconnected dynamics, and
combined control techniques.
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Introduction I

Tuberculosis (TB) is shorten for tubercles bacillus an airborne disease caused by the
rod-shaped bacteria pathogen Mycobacterium tuberculosis bacillus (MTB).
Tuberculosis (TB) is a chronic sickness that kills individuals. Controlling the illness is
di�cult due to its complicated epidemiology and lack of understanding.
TB progression in susceptible persons starts with MTBC infection [1].
The sickness may remain latent for some years before becoming active. TB can also be
acquired by co-infection with other diseases [2].
The mathematical model is a useful tool for evaluating infectious disease control e�orts
[3]. Mathematical models have substantially improved our understanding of the
di�culties of TB transmission.
During the latent period, the pathogen has little metabolic activity until it is revived by a
weakened host. Each year, tuberculosis kills over a million people, and in 2019, it was the
largest cause of mortality from a single infectious agent. Over the last three decades,
there have been several global attempts to combat tuberculosis (TB). The WHO's End
TB Strategy intends to accelerate progress by lowering tuberculosis incidence and
fatalities by 90% and 95%, respectively, between 2015 and 2035. Blower et al. developed
the fundamental mathematical equations for TB in 1995 [12].
Several computational theories for TB have been created over time due to its
preventability and curability concepts [10-21].
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Introduction II

Despite various studies have been conducted on dynamical TB models transmitted
between human beings, there has been less study on models' optimal control on the
spread between humans and animals. The objectives of the model are as follows:

(i) To examine human-animal TB model optimal control strategies

(ii) To incorporate timely public awareness and e�cacy of treatment in the control
strategies

B. A. Peter1, J. A. Akingbade2
∗

and O . M. Bamigbola2An optimal control intervention for the interrelated dynamics of TB transmission in humans and animals amidst seasonal �ux.May 27, 2024 5 / 37



Materials and Methods

To accomplish the purpose of this study, a compartmental deterministic model was
established and examined with a system of ordinary di�erential equations. The model's
fundamental reproduction number is computed. The stability of the model's equilibrium
points was investigated using Jacobian matrix theory and Routh-Hurwitz's criterion.
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Mathematical Conceptions and Analogies I

A deterministic compartmental model of TB is proposed. The population most
vulnerable is determined by the rate of birth and immigration, and the total population at
any one moment is written as Nh & Na. The dynamics of the spread of tuberculosis in an
endemic population with e�ective strategy control are investigated. Exogenous
reinfection happens shortly after the initial infection. Infected individuals have a higher
chance of progressing and becoming infectious. Individuals who are infected but do not
become infectious quickly may nevertheless acquire active tuberculosis by exogenous or
endogenous reinfection, or both. Equation (1) describes the model and shows how
exogenous reinfection a�ects the dynamics of tuberculosis.
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Mathematical Conceptions and Analogies II

Figure:
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Mathematical Conceptions and Analogies III

dSh

dt
= πh + (Γh + εh)Rh −

baβh IaSh

(1 + αIa)
− (ϕh + µh(1 − kEh))Sh + ξh Ih

dEh

dt
=

baβh(1 − p)IaSh

(1 + αIa)
− (ϑh + νh + σh + γh + (1 − τh) + µh(1 + KEh))Eh − δEh + v2(t)Ih − (1 − v1(t))Eh,

dIh

dt
=

pbaβh IaSh

(1 + αIa)
+ (ϑh + γh + νh + (1 − τh)µh)Eh + ωhRh − (τh + ηh + ρh + (1 − ∧h) + ξh + µh + ψh)Ih+

δEh − (1 − θ)σρIh + (1 − v1(t))Eh − v2(t)Ih

dAh

dt
= (1 − ∧h)Ih + (τh + ρh)Ih − (ζh + µh)Ah,

dRh

dt
= ζhA − (Γh + εh + µh)Rh − ωhRh + ηh Ih,

dSa

dt
= (1 − KEa)πa −

baβa(1 − q)IhSa

(1 + αIh)
− µa(1 + ρaKEa)Sa.

dEa

dt
=

baβa(1 − q)IhSa

(1 + αIh)
− (ϑa − µa(1 + ρaKEa))Ea + ζa Ia.

dIa

dt
= (ϑa + νa)Ea − (ζa + λa + µa)Ia.


(1)
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Mathematical Conceptions and Analogies IV

Table: Variable and Parameter Descriptions

Variables Descriptions

Sh(t) The total population of vulnerable human's population
Eh(t) The total population of unprotected human's population
Ih(t) The total population of indicative or infected human's population
Ah(t) Persons who are infectious but not infected, or the entire population of asymptomatic people
Rh(t) The total population of recovered human's population
Sa(t) The total population of exposed animals
Ea(t) The total population of vulnerable animals
Ia(t) The total population of vector-borne disease animals
Na(t) The total population of human

Parameter
γh Advancement from exposed
ηh Cure rate
ω Relapse to active TB
ζa Quarantine rate of infected animal
q Susceptible human who came in contact with infection animal
p Susceptible animal who came in contact with infection human

KEa E�cacy of treatment
δ(t) Seasonal variations
ba The average animal carrier rate
φh The vulnerable protected
ρ Vaccinated
βh Probability of infection of susceptible human population per animals
βa The probability of infection of susceptible vectors-borne per animals
πh The birth rate of human being
πh The birth rate of the animals
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Mathematical Conceptions and Analogies V

Table: Variable and Parameter Descriptions

Parameters Descriptions

νa The per capital progression rate of exposed animals
µa The natural death of animal
µh The natural death of human's population
ξh The reinfection rate of recovered human's population due to ine�ective treatment
τh Disease progression rate
∧a TB-induced death rate for infectious human's population
ϵh The rate of recuperation (recovered) rate due to treatment
νh Human's progression rate from exposed
Γh Natural immunity gain in human population

baβI

1 + αI
Saturated incidence rate

Individual moves back from to due to ine�ective therapy
ψh Public awareness of TB
α Saturated incidence rate change into a symptomatic compartment
σ Movement rate from treated
θ Failure rate of treated human population

baβh(1 − p)IaSh

(1 + αIa)
Exogenous reinfection

Control Parameter
v1 Immunization
v2 Therapy
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Population dynamics

The population of humans Nh(t) h is expressed as follows:

Nh(t) = Sh + Eh + Ih + Ah + Rh, (2)

Consequently, the overall number of animals Na(t) is being established as

Nb(t) = Sa + Ea + Ia, (3)

The derivatives of equations (2) and (3) yield

dNh

dt
=

dSh

dt
+

dEh

dt
+

dIh

dt
+

dAh

dt
+

dRh

dt
, (4)

and

dNa

dt
=

dSa

dt
+

dEa

dt
+

dIa

dt
. (5)

Combining equations (1), (4) and (5) together yield

dNh

dt
= πh − µhNh − (ϕh + µhkEh)Sh − (σh + (1− τh) + τhµh)Eh − ψhIh + (1− θ)σρIh,

dNa

dt
= (1− KEa)πa − µaNa − µaρaKEaSa + µa(1+ ρaKEa))Ea + νaEa − (ζa + λa)Ia.

(6)
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Boundedness and Positivity of the Model's Solution I

The model system's fundamental features (1) are used to establish the criteria for solution
positivity and system wellness. The feasibility of the model's solution (1) is evaluated based on its
biological relevance in the researched location. The feasibility of the model which describes the
region in which the solution of the model (1) is investigated because of its biological important.

Theorem

As t approaches ∞, the solution Ω of the model (1) with initial conditions in ℜ+ (set of
vectors with eight non-negative components) approaches and remains in the solution's
domain. Then, feasible The solution for the model is a positively invariant set provided by

Ω = Ωh × Ωv =
{
(Sh + Eh + Ih + Ah + R + Sa + Ea + Ia) ∈ ℜ8

+ : Nh(t) ≤ π
µh
,Na(t) ≤ (1−KEa)πa

µa

}
. (7)

From equation (6), In the absence of the disease

dNh

dt
= πh − µhNh. (8)

Following Birkho� and Rota's (1989) equation yields

dNh

dt
≤ πh − µhNh, (9)
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Boundedness and Positivity of the Model's Solution II

Integrating and assuming 0 ≤ Nh ≤ πh
µh
, the model Eq. (1) channels are con�ned.

Therefore, the solution set for equation (7) is a compact forward persistent set for system
equation (7).
When Nh > πh

µh
(exceeds πh

µh
), dN

dt
< 0. For t > 0, all solutions with a beginning condition

in R8

+ stay in the domain Ωha, a non-negatve invariant set under the model's �ow (1).
The system has epidemiological signi�cance and is mathematically well-posed inside the
domain Ωha.

B. A. Peter1, J. A. Akingbade2
∗

and O . M. Bamigbola2An optimal control intervention for the interrelated dynamics of TB transmission in humans and animals amidst seasonal �ux.May 27, 2024 14 / 37



Disease-free Stability of the System

To ensure that the population is free of bacteria, the diseased status will be set to zero.
Equation (1) at DFE becomes

E0 = (S0
h ,E

0
h , I

0
h ,A

0
h,R

0
h , S

0
a ,E

0
a , I

0
a )

=

(
πh

(ϕh + µh(1− kEh))
, 0, 0, 0, 0,

(1− KEa)πa

µa(1+ ρaKEa)

)
.

(10)
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The fundamental reproductive number of the mode I

To calculate the e�ective reproduction number R0, the di�erential equations withing the
compartments are employed to calculate the rate of fresh infection (Fi ), and transfer into
and out of the infected and recovered compartments (Vi ) as shown in Figure ??.

Fi =



baβh(1 − p)IaSh

(1 + αIa)
pbaβh IaSh

(1 + αIa)
0

baβa(1 − q)IhSa

(1 + αIh)
0


, (11)

At DFE, I0h = I0a = 0

F =


0 0 0 0 baβh(1 − p)Sh
0 0 0 0 pbaβhSh
0 0 0 0 0
0 0 0 0 0
0 baβa(1 − q)Sa 0 0 0

 . (12)

Vi =


(ϑh + νh + σh + γh + (1 − τh) + µh(1 + KEh))Eh + δEh − v2(t)Ih + (1 − v1(t))Eh

−(ϑh + γh + νh + (1 − τh)µh)Eh − ωhRh + (τh + ηh + ρh + (1 − ∧h) + ξh + µh + ψh)Ih − δEh+
(1 − θ)σρIh...− (1 − v1(t))Eh + v2(t)Ih
−(1 − ∧h)Ih − (τh + ρh)Ih + (ζh + µh)Ah

(ϑa − µa(1 + ρaKEa))Ea − ζa Ia
−(ϑa + νa)Ea + (ζa + λa + µa)Ia

 ,

(13)
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The fundamental reproductive number of the mode II

Obtaining the partial derivatives of (13) with respect to Eh, Ih, Ah, Ea and Ia respectively yield

V =



X1 −v2 0 0 0

−X6 X2 0 0 0

0 X7 X3 0 0

0 0 0 X4 −ζa

0 0 0 −X8 X5


(14)

X1 = (ϑh + νh + σh + γh + (1 − τh) + µh(1 + KEh) + δ + (1 − v1)), X2 =
(τh + ηh + ρh + (1 − ∧h) + ξh + µh + ψh + v2) + (1 − θ)σρ, X3 = (ζh + µh), X4 = (ϑa − µa(1 + ρaKEa)), X5 =
(ζa + λa + µa), X6 = (ϑh + γh + νh + (1 − τh)µh + δ), X7 = −(1 − ∧h + τh + ρh), X8 = (ϑa + νa)

FV−1 =



0 0 0
baβh (1 − p) ShX8

X5X4 − X8ζa

baβh (1 − p) ShX4

X5X4 − X8ζa

0 0 0
pbaβhShX8

X5X4 − X8ζa

pbaβhShX4

X5X4 − X8ζa

0 0 0 0 0

0 0 0 0 0

baβa (1 − q) SaX6

X2X1 − X6v2

baβa (1 − q) SaX1

X2X1 − X6v2
0 0 0



(15)
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The fundamental reproductive number of the mode III

Then the eigenvalues of the matrix (15) are computed with

λ1 = 0

λ2 = 0

λ3 = 0

λ4 =

√
MβaSaShX4 (X6βh (1 − p) + X1pβh − qX6βh (1 − p) − qX1pβh)ba

X2X1X5X4 − X2X1X8ζa − X6v2X5X4 + X6v2X8ζa

λ5 = −
√

MβaSaShX4 (X6βh (1 − p) + X1pβh − qX6βh (1 − p) − qX1pβh)ba

X2X1X5X4 − X2X1X8ζa − X6v2X5X4 + X6v2X8ζa
.


Therefore, the basic reproduction number which is given by the largest eigenvalue for the model of TB denoted by R0
is given by

R0 = ρ(FV−1) = max {λ4, λ5} . (16)

∴ R0 =

√
MβaSaShX4 (X6βh (1 − p) + X1pβh − qX6βh (1 − p) − qX1pβh)ba

X2X1X5X4 − X2X1X8ζa − X6v2X5X4 + X6v2X8ζa
(17)

M = (X2X1X5X4 − X2X1X8ζa − X6v2X5X4 + X6v2X8ζa)

Remark

i. If R0 ≥ 1 then the disease infectious Ih exists

ii. If R0 < 1 then disease eradicated in the population i.e Ih = 0
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The model's ecological equilibrium I

Solving system of equation (1) simultaneously in terms of R0 to obtain endemic
equilibrium state yield the following

E∗ =



S∗
h =

πh

(ϕh + µh(1 − kEh))R0

E∗
h =

[
P1 + P2

]
(R0 − 1)

R0
[
R0[(ϑa − A6)A8 + A9ζa] + α(1 − KEa)πa(R0 − 1)

]
A7B1G1

I∗h =
A6(R0 − 1)

A5 − αA6(R0 − 1)

A∗
h =

A2A6(R0 − 1)

A3[A5 − αA6(R0 − 1)]

R∗
h =

[ζhA2 + ηhA3]A6(R0 − 1)

A3A4[A5 − αA6(R0 − 1)]

S∗
a =

(1 − KEa)πa

µa(1 + ρaKEa)R0

E∗
a =

A8(1 − KEa)πa(R0 − 1)

[(ϑa − A6)A8 + A9ζa]A9R0

I∗a =
(1 − KEa)πa(R0 − 1)

R0[(ϑa − A6)A8 + A9ζa]

(18)

Where,
A1 = (Γh + εh), A2 = (1 − ∧h + τh + ρh), A3 = (ζh + µh), A4 = (Γh + εh + µh + ωh), A5 = baβa(1 − q), A6 =
µa(1 + ρaKEa), A7 = (ϕh + µh(1 − kEh)), A8 = (ζa + λa + µa), A9 = (ϑa + νa), B1 = A5 − αA6(R0 − 1), G1 =
(ϑh + νh + σh + γh + (1 − τh) + µh(1 + KEh) + δ + (1 − v1(t))), P1 = baβhπhπa(1 − p)(1 − KEa)B1, P2 =
R0

(
R0((ϑa − A6)A8 + A9ζa) + α(1 − KEa)πa(R0 − 1)

)
A7v2(t)A6
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The model's ecological equilibrium II

Thus, if R0 > 1, then I ∗h > 0 and I ∗a > 0 then model equation in Eq. (1) has a unique
endemic equilibrium given by E∗ = (S∗

h ,E
∗
h , I

∗
h ,A

∗
h ,R

∗
h , S

∗
a ,E

∗
a , I

∗
a ) which in the presence

of infection (I̸= 0) is de�ned.
Therefore, to ensure the existence of a positive endemic-equilibrium, it is required that
R0 > 1.
Since (S∗

h ,E
∗
h , I

∗
h ,A

∗
h ,R

∗
h , S

∗
a ,E

∗
a , I

∗
a ) > 0 (when R0 > 1), the endemic-equilibrium E∗ is

positive and I ∗h,a > 0. This is the condition for the existence and uniqueness of the
endemic-equilibrium state for the model (1).
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Local stability analysis of the disease-free equilibrium state I

To determine the stability or otherwise of the disease - free equilibrium point E0, we
examine the behaviour of the model population near the equilibrium solution. Here, we
compute the Jacobian matrix J of model Eq. (1)
The method of trace and determinant was used to evaluate system of equations (1)
without explicitly calculating eigenvalues.

Theorem

: The disease-free equilibrium state E0 is locally asymptotically stable if R0 < 1 for

tr(JE0) < 0 and det(JE0) > 0, and unstable if R0 > 1 for tr(JE0) > 0 and det(JE0) < 0.

Proof. The Jacobian matrix evaluated at the DFE (E0) was constructed and obtained as:

JE0 =



−W1 0 ξh 0 W2 0 0 −W13
0 −W3 v2 0 0 0 0 W14
0 W4 −W5 0 ωh 0 0 W15
0 0 W6 −W7 0 0 0 0
0 0 ηh ζh −W8 0 0 0
0 0 W16 0 0 −W9 0 0
0 0 W17 0 0 0 −W10 ζa
0 0 0 0 0 0 W11 −W12


(19)

The matrix J0(E0) in eqn. (19) of dimension (8) is stable if its trace is negative i.e tr(J0E0) < 0 and its determinant

is positive i.e det(J0E0)) ≥ 0.
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Local stability analysis of the disease-free equilibrium state II

The trace of matrix J0(E0) is obtained as:

tr(J+) = −W1 − W3 − W5 − W7 − W8 − W9 − W10 − W12

= −(W1 + W3 + W5 + W7 + W8 + W9 + W10 + W12)

∴ tr(E0) < 0

(20)

Also, the determinant of matrix J0(E0) is generated as

detJ0(E0) = [W10W12
[
W8W7W3W5 −

(
W4W8W7ν2 + W6ωhW3ζh + ωhW3W7ηh

)]
+ W4W11W8W7

(
ζaν2 − W17W14

)
+

W3W11ζa
(
ωhW6ζh − W8W7W5

)
+ W11W3W7

(
ζaωhηh − W8W17W15

)
]W1W9

Hence,

det(J+) ≥ 0

if and only if

W8W7W3W5 ≥
(
W4W8W7ν2 + W6ωhW3ζh + ωhW3W7ηh

)
,

ζaν2 ≥ W17W14, ωhW6ζh ≥ W8W7W5, and ζaωhηh ≥ W8W17W15

Where,
W1 = (ϕh + µh(1− kEh)),W2 = (Γh + εh),W3 = (ϑh + νh + σh + γh + (1− τh) + µh(1 + KEh) + δ + (1− v1)),W4 =
(ϑh + γh + νh + (1− τh)µh + δ + (1− v1)),W5 = (τh + ηh + ρh + (1− ∧h) + ξh + µh + ψh + (1− θ)σρ + v2),W6 =
(1−∧h+τh+ρh),W7 = (ζh+µh),W8 = (Γh+εh+µh+ωh),W9 = µa(1+ρaKEa),W10 = (ϑa−µa(1+ρaKEa)),W11 =

(ϑa + νa),W12 = (ζa + λa + µa),W13 =
−baβhπh

(ϕh + µh(1 − kEh))
,W14 =

baβh(1 − p)πh

(ϕh + µh(1 − kEh))
,W15 =
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Local stability analysis of the disease-free equilibrium state III

pbaβhπh

(ϕh + µh(1 − kEh))
,W16 =

−baβa(1 − q)(1 − KEa)πa

µa(1 + ρaKEa)
,W17 =

baβa(1 − q)(1 − KEa)πa

µa(1 + ρaKEa)
From above result for the

trace and determinant of the matrix which shows that tr(J0) < 0 and det(J0) > 0.
This proves that the disease-free equilibrium point is locally asymptotically stable. Biologically, this means that the
disease dies out.

Conversely if R0 > 1 then tr(J0) > 0. This would cause the determinant to be negative (i.e det(J0) < 0) and making

the disease free-equilibrium point unstable. Biologically, this means that the disease persists.
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Optimal Control Solution of the Model I

One of the early reasons for studying TB infection is to improve the control variables and �nally
to put down the infection of the population.
Optimal control theory is a useful mathematical analysis tool that can be used to make the best
decisions in controlling a given problem at the minimum cost.
The optimal control theory, which was developed by Pontryagin and his co-workers in the late
1950s, has been applied to many areas including economics, management, engineering, biology,
physiology, and medicine.
To describe the mathematical model presented in (1), the below objective functional (21) was
employed.Our aim, objectives and goals here is to seek an optimal control strategy to put down
TB infection from population by reducing the exposed Eh(t) and infected Ih(t) individuals and
also increasing the recovered individuals Rh(t) in a population and to minimizing the costs
required to control the TB infection by using Immunization and therapy as the control variables
v1(t) and v(t) respectively.

Given the objective functional subject to equation. (1) :

J(v1, v2) = min
v1,v2

∫ T

0

[
A1Eh(t) + A2Ih(t) +

1

2

(
B1v

2
1 + B2v

2
2

)]
dt (21)

A1 & A2 are positive constants that are represented to keep a balance weight constants or balance factors in the size
of Eh(t) & Ih(t) group respectively; B1 and B2 are constants relatively cost weights corresponding to the controls v1
and v2. For the control problem we assume that the initial time is zero,t0 = 0, the �nal time t1 = T .
Thus, the terms B1v

2
1 and B2v

2
2 represents the costs associated with immunization and therapy, respectively. The

square of the control variables is taken here to remove the severity of the controls. The form is quadratic because we
assume that costs are non-linear in its nature.
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Optimal Control Solution of the Model II

Here is the Hamiltonian for the optimal control problem in Eqs. (1) and (21).

H(Sh, Vh, Eh, Ih,Q,T , R, Sb, Vb, Eb, Ib, u1, u2, u3; t) = A1Eh(t) + A2Ih(t) +
B1

2
v21 +

B2

2
v22+

λ1(t)

(
πh + (Γh + εh)Rh −

baβh IaSh

(1 + αIa)
− (ϕh + µh(1 − kEh))Sh + ξh Ih

)

+ λ2(t)

(
baβh(1 − p)IaSh

(1 + αIa)
− (ϑh + νh + σh + γh + (1 − τh) + µh(1 + KEh))Eh − δEh + v2(t)Ih − (1 − v1(t))Eh

)
+

λ3(t)

(
pbaβh IaSh

(1 + αIa)
+ (ϑh + γh + νh + (1 − τh)µh)Eh + ωhRh − (τh + ηh + ρh + (1 − ∧h) + ξh + µh + ψh)Ih+

δEh − (1 − θ)σρIh + (1 − v1(t))Eh − v2(t)Ih

)
+ λ4(t)

(
(1 − ∧h)Ih + (τh + ρh)Ih − (ζh + µh)Ah

)
+

λ5(t)

(
ζhA − (Γh + εh + µh)Rh − ωhRh + ηh Ih

)
+ λ6(t)

(
(1 − KEa)πa −

baβa(1 − q)IhSa

(1 + αIh)
− µa(1 + ρaKEa)Sa

)
+

λ7(t)

(
baβa(1 − q)IhSa

(1 + αIh)
− (ϑa − µa(1 + ρaKEa))Ea + ζa Ia

)
+ λ8(t)

(
(ϑa + νa)Ea − (ζa + λa + µa)Ia

)
(22)

The following theorem holds.
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Optimal Control Solution of the Model III

Theorem

(Necessary Conditions)
Given that (S∗

h , E
∗
h , I

∗
h ,T

∗, R∗, S∗
a , E

∗
a , I

∗
a ) are optimal state solutions and (v1, v2) are associated optimal control

variables for the optimal control problem (1), then there exist eleven (11) adjoint variables λi for i=1,2,3,4,5,6,7,8
which satisfying

λ
′
1 =

−∂H
∂Sh

, λ
′
2 =

−∂H
∂Eh

, λ
′
3 =

−∂H
∂Ih

, λ
′
4 =

−∂H
∂Ah

, λ
′
5 =

−∂H
∂R

, λ
′
6 =

−∂H
∂Sa

, λ
′
7 =

−∂H
∂Ea

, λ
′
8 =

−∂H
∂Ia

(23)

with the transversality conditions (boundary conditions) or (�nal time conditions) λi (T ) = 0, (i=1,2,3....8).
with the optimal control pair given by

v∗1 (t) = min

{
max

(
0,

(λ∗
3 − λ∗

2 )E
∗
h

B1

)
, 1

}

v∗2 (t) = min

{
max

(
0,

(λ∗
3 − λ2)I

∗
h

B2

)
, 1

}
.


(24)
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Optimal Control Solution of the Model IV

Proof.

dλ1

dt
= [λ1(t) − λ2(t)]

baβh Ia

(1 + αIa)2
+ λ1(t)(ϕh + µh(1 − kEh)) + [λ2(t) − λ3(t)]

pbaβh Ia

(1 + αIa)2

dλ2

dt
= −A1 + [λ2(t) − λ3(t)](ϑh + νh + γh + δ + (1 − µh)(1 − τh) + (1 − v1(t))) + λ2(t)σh + λ2(t)(µh(1 + KEh))

dλ3

dt
= −A2 + [λ3(t) − λ1(t)]ξh + [λ3(t) − λ2(t)]v2(t) + λ3(t)(µh + ψh) − λ3(t)(1 − θ)σρ + [λ3(t) − λ4(t)](1 − ∧h)

+ [λ3(t) − λ4(t)]τh + [λ3(t) − λ4(t)]ρh + [λ3(t) − λ5(t)]ηh + [λ6(t) − λ7(t)]
baβa(1 − q)Sa

(1 + αIh)
2

dλ4

dt
= [λ4(t) − λ5(t)]ζh + λ4(t)µh

dλ5

dt
= −λ1(t)πh + [λ5(t) − λ1(t)](Γh + εh) + [λ5(t) − λ3(t)]ωh + λ5(t)µh

dλ6

dt
= [λ6(t) − λ7(t)]

baβa(1 − q)Ih

(1 + αIh)
2

+ λ6(t)µa(1 + ρaKEa)

dλ7

dt
= [λ7(t) − λ8(t)]ϑa + λ7(t)µa(1 + ρaKEa) − λ8(t)νa

dλ8

dt
= [λ1(t) − λ2(t)]

baβhSh

(1 + αIa)2
+ [λ2(t) − λ3(t)]

pbaβhSh

(1 + αIa)2
+ [λ8(t) − λ7(t)]ζa + λ8(t)λa + λ8(t)µa


(25)
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Optimal Control Solution of the Model V

Optimal controls obtained after di�erentiating H w.r.t. v1 and v2

v∗1 (t) =

[
λ∗
3 (t) − λ∗

2 (t)
]
E∗
h (t)

B1

v∗2 (t) =

[
λ∗
3 (t) − λ∗

2 (t)
]
I∗h (t)

B2

 (26)

Ṡ∗
h = πh + (Γh + εh)Rh −

baβh IaSh

(1 + αIa)
− (ϕh + µh(1 − kEh))Sh + ξh Ih

Ė∗
h =

baβh(1 − p)IaSh

(1 + αIa)
− (ϑh + νh + σh + γh + (1 − τh) + µh(1 + KEh))Eh − δEh+

(
min

{
max

(
0,

(λ∗
3 − λ∗

2 )I
∗
h

B1

)
, 1

})
Ih −

(
1 −

(
min

{
max

(
0,

(λ∗
3 − λ∗

2 )E
∗
h

B1

)
, 1

}))
Eh,

İ∗h ==
pbaβh IaSh

(1 + αIa)
+ (ϑh + γh + νh + (1 − τh)µh)Eh + ωhRh − (τh + ηh + ρh + (1 − ∧h) + ξh + µh + ψh)Ih+

δEh − (1 − θ)σρIh +

(
1 −

(
min

{
max

(
0,

(λ∗
3 − λ∗

2 )
∗
h

B1

)
, 1

}))
Eh −

(
min

{
max

(
0,

(λ∗
3 − λ∗

2 )I
∗
h

B1

)
, 1

})
Ih

Ȧ∗
h = (1 − ∧h)Ih + (τh + ρh)Ih − (ζh + µh)Ah,

Ṙ∗
h = ζhA − (Γh + εh + µh)Rh − ωhRh + ηh Ih,

Ṡ∗
a = (1 − KEa)πa −

baβa(1 − q)IhSa

(1 + αIh)
− µa(1 + ρaKEa)Sa.

Ė∗
a =

baβa(1 − q)IhSa

(1 + αIh)
− (ϑa − µa(1 + ρaKEa))Ea + ζa Ia.

İ∗a = (ϑa + νa)Ea − (ζa + λa + µa)Ia.


(27)
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Numerical Simulation I

Table: Parameter values of TB model

Symbol Description Symbol Description

ϑh 0.05 ba 0.05
νh 0.02 p 0.35
σh 0.01 ζa 0.02
γh 0.01 βh 0.04
µh 0.05 ρh 0.04
KEh 0.001 q 0.09
KEa 0.9 ρ 0.01
δ 0.6 ϕh 0.6
ηh 0.06 πh 1000
∧h 0.0002 πa 100
ξh 0.3 v1 [0-1]
ψh 0.8 v1 [0-1]
θ 0.26 α [0.02 - 1.0]
σ 0.5 νh 0.0016
ζh 0.04 τh 0.05
µa 0.027 ϑa 0.07
ρa 0.73 νa 0.01
λa 0.05

R0 =

√
MβaSaShX4 (X6βh (1− p) + X1pβh − qX6βh (1− p)− qX1pβh)ba

X2X1X5X4 − X2X1X8ζa − X6v2X5X4 + X6v2X8ζa
(28)

Using the above parameters we will obtained the following
When,
v1 = 0.0, v2 = 0.0,R0 = 2.269426314,
v1 = 0.5, v2 = 0.5,R0 = 0.5753486745
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Numerical Simulation II

Figure: Infected Compartment against time using Control strategy
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Numerical Simulation III

Figure: Exposed Compartment against time using Control strategy
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Discussion I

The mathematical model used in the study to investigate the dynamics of TB transmission in

both human and animal populations reveals a complex interplay of factors in�uencing disease

propagation. Seasonal changes, saturation incidence rates, and therapeutic e�cacy all contribute

to a more thorough knowledge of how tuberculosis survives and evolves within communities. The

model sheds light on an intriguing element of tuberculosis transmission: the seasonal �ux.

Seasonal �uctuations in temperature and environmental variables can have a considerable

in�uence on disease dynamics, a�ecting both individual vulnerability and mycobacterium survival

in the environment. Furthermore, the model emphasizes the idea of saturation incidence rates, in

which the pool of susceptible people is depleted over time as a result of previous infections or

therapies. As the frequency of TB in the community falls, so does the rate of new infections,

eventually reaching saturation and making future reductions more di�cult. This saturation e�ect

emphasizes the signi�cance of early and vigorous intervention methods to prevent the disease

from becoming endemic. Furthermore, the success of treatments, such as vaccination campaigns,

treatment programs, and public health initiatives, is critical in limiting TB transmission. The

model enables researchers to investigate the possible e�ects of various intervention options and

assess their e�cacy in lowering disease burden. By optimizing resource allocation and adapting

interventions to speci�c demographic features, TB control e�orts will become more e�ective

globally.
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Conclusion I

Under certain conditions, the unique endemic equilibrium becomes globally
asymptotically stable. Optimal control measures for tuberculosis bacteria include
preventive and control education, prompt treatment, and enhanced e�cacy. This control
is situated between 0 ≤ vj ≤ 1, where j = 1, 2 and v1, v2 are immunization and therapy,
respectively. If v1 = 0 the use of personal protective measures such as drinking warm
water, wearing facial masks, wearing a nasal guard, and avoiding dusty regions is
ine�ectual, then when vj is greater than zero, such precautions are completely e�ective.
More focused and e�ective ways for �ghting this chronic global health issue are created
as the comprehension of TB dynamics improves via mathematical modelling and
empirical investigations.

B. A. Peter1, J. A. Akingbade2
∗

and O . M. Bamigbola2An optimal control intervention for the interrelated dynamics of TB transmission in humans and animals amidst seasonal �ux.May 27, 2024 33 / 37



REFERENCES I

Patrick B. Phepa, Faraimunashe Chirove, and Keshlan S. Govinder. Modeling the epidemiology of bovine TB in

cow and bu�alo livestock, including many transmission paths. Journal of Mathematical Biosciences, Volume
277, July 2016, pages 47-58.

Bovine tuberculosis, 2024, http://www.cfsph.iastate.edu/Factsheets/pdfs/bovine-tuberculosis.pdf. [Online,

viewed on January 30, 2024].

F.B. Agusto, S. Lenhart, A.B. Gumel, and A. Odoi, Mathematical study of a model for the spreading motion of

bovine TB, Math. Meth. Appl. Sci. 34(15), 1873-1887 (2011).

Establishing the Limits of Practical Caution for Bovine Tuberculosis,

http://www.sanparks.co.za/docs/conservation/scienti�c/mission/TPC-BTB.pdf. [Online; accessed January 30,
2024]

I.A. Baba, F.T. Sa'ad, "universal stability evaluation of three genotypes of in�uenza virus simulation," Far East

J. Math. Sci. 102 (12) (2017) 3259�3271.

B. Kaymakamzade, I.A. Baba, and E. H�nçal, Regional stability evaluation of an oseltamivir-resistant in�uenza

virus model, Procedia Comput. Sci. 102 (2016): 333�341.

I.A. Baba, B. Kaymakamzade, and E. H�nçal, Dual-strain outbreak paradigm with two vaccines, Chaos Solitons

Fractals 106 (2018): 342-348.

Baba, I.A., & H�nçal, E. (2018). A conceptual framework for in�uenza vaccine and consciousness. Chaos

Solitons Fractals 106: 49-55.

D. Gao, N. Huang, E�ective control assessment of a TB model, Journal of Appl. Math. Model. 2018 (000),

1-18.

B. A. Peter1, J. A. Akingbade2
∗

and O . M. Bamigbola2An optimal control intervention for the interrelated dynamics of TB transmission in humans and animals amidst seasonal �ux.May 27, 2024 34 / 37



REFERENCES II

I. A. Baba, R.A. Abdulkadir, and P. Esmaili. A review of a TB model with a the saturation rate of occurrence

and optimum management. Journal of Physica A, volume 540 (2020), pages 1-10.

Calf TB is on the World Organization for Animal Health (WOAH) list. [Online, viewed January 29, 2024.]

S. M. Blower, A. R. McLean, T. C. Porco, P. M. Small, P. C. Hopwell, M. A. Sanchez, and A. R. Moss, 1995.

The inherent spreading pattern of TB outbreaks. Journal of Nature Medicine, 1(8), 815�821.

Das, Khajanchi, and Kar (2020). Tb epidemiology following recurred re-infections. Journal of Chaos, Solitons,

and Fractals, Volume 130, Pages 1�13.

Wangari IM, Stone L. Retroactive separation and �uctuation in prototypes of constant TB. Journal of PLoS

ONE 2018;13(3).

Mclvor A, Koornhof H, Relapse KD. Recurrence and combined diseases in TB disease. Journal of Pathog Dis

2017;75. Ftx020.

Seidu B, Makinde OD, and Seini I. mathematical assessment of the implications of HIV-malaria a combination

of viruses on job-related e�cacy. Journal of Acta Biotheor 2015;63(2):151�82.

Tilhun GT, Makinde OD, and Malonza D. Modeling and optimal control of pneumonia disease with

cost-e�ective strategies. Journal of Biol Dyn 2017;11(S2):400�26.

Tilhun GT, Makinde OD, and Malonza D. Simulation and Enhanced Management of The illness fever sickness

with economical strategies. Journal of Computer Math Methods, 2017. Article ID: 2324518.

Gerberry DJ. Pragmatic implications of downstream divergence in a computational concept for

mycobacteria.Journal of Theoretical Biology 2016;388:15-36.

B. A. Peter1, J. A. Akingbade2
∗

and O . M. Bamigbola2An optimal control intervention for the interrelated dynamics of TB transmission in humans and animals amidst seasonal �ux.May 27, 2024 35 / 37



REFERENCES III

Kar TK, Nandi SK, and Jana S. Mandal. The sustainability and divergence of an infectious scenario with the

in�uence of communication. Journal of Chaos Solitons Fractals 2019;120:188�99.

Nuno Santos, (2023). Synopsis of TB in Animals: Generic Circumstances (MSD Veterinarian Manual). [Online,

viewed January 29, 2024.]

[3] Dye, C., Global epidemiology of tuberculosis, the Lancet, 367, 2006, 938�940.

[5] World Health Organization, Tuberculosis, fact sheet no. 104, March 2007.

http://www.who.int/mediacentre/factsheets/fs104/en/index.html

[6] World Health Organization, Tuberculosis, Global tuberculosis report 2016.

http://www.who.int/tb/publications/global report/en/

[2] World Health Organization, Global Tuberculosis Report 2013, WHO, Geneva, Switzerland, 2013.

[3b] Kochi, A., (1991) �The global tuberculosis situation and the new control strategy of the World Health

Organization�, Bulletin of the World Health Organization, vol. 79, no. 1, pp. 71�75, 2001.

Birkho�, G. and Rota, G. C. (1989). Ordinary di�erential equations, fourth edition. John Wiley and son inc.

New York. press. pp. 27

Lenhart, S., and Workman,J. T. Optimal Control Applied to Biological Models,Chapman and

Hall/CRC,London, (2007).

Fleming, W.H, Rishel RW (1975) Deterministic and stochastic optimal control.Springer, New York

May 27, 2024

B. A. Peter1, J. A. Akingbade2
∗

and O . M. Bamigbola2An optimal control intervention for the interrelated dynamics of TB transmission in humans and animals amidst seasonal �ux.May 27, 2024 36 / 37



Thank You

B. A. Peter1, J. A. Akingbade2
∗

and O . M. Bamigbola2An optimal control intervention for the interrelated dynamics of TB transmission in humans and animals amidst seasonal �ux.May 27, 2024 37 / 37


	Abstract
	Introduction
	Materials and Methods
	Mathematical Conceptions and Analogies
	Qualitative Analysis of the Model
	Population dynamics
	Boundedness and Positivity of the Model's Solution
	Disease-free Stability of the System
	The fundamental reproductive number of the model
	The model's ecological equilibrium
	Local stability analysis of the disease-free equilibrium state

	Optimal Control Solution of the Model
	Optimal Control System

	Numerical Simulation
	Discussion
	Conclusion
	REFERENCES

