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ABSTRACT

Due to post COVID-19 pandemic aftermath, the resurgence of vaccine-preventable respiratory diseases like Diphtheria and Pertussis poses as

public health challenge particularly in infants and children who missed out of routine vaccination programs during outbreak.

This study hinges on the fact that pathogens can coexist in a host, therefore we propose a non-optimal and optimal control intervention
strategy to check the transmission co-dynamics of diphtheria and pertussis. The SIR-type model was utilized and modified into 8
compartments with Vaccination at birth, Maternal derived immunity and partial quarantine as non-optimal control disease controller. Our

research work first established that the model is both epidemiologically and mathematically sound.

The next generation matrix was used to derive the co-infection of the basic reproduction number, after which stability analysis was done. The
formulated model exhibits four equilibria points, which are; diphtheria-free equilibrium, pertussis-free equilibrium, co-infection-free
equilibrium and co-infection endemic equilibrium. The sensitivity analysis was manually calculated to know the effects and magnitude of

each parameter on the basic reproduction number.

Furthermore, the existence of an optimal control was established, The Hamilton and Pontryagin principles for optimal control was
employed to provide insights on control input interventions such as disease awareness campaigns, vaccination programs, provision of

personal protective equipment (PPE) for health workers, cocooning and intensified diagnosis efforts.

The accuracy of the pertussis-diphtheria co-infection model was validated through theoretical and Numerical simulation and relevant results

are graphically displayed.



INTROD UCTION

Emergence and resurgence of vaccine-preventable infectious diseases such as diphtheria and pertussis continues to pose formidable challenges to public
health, particularly due to disruptions in basic immunization programs induced by the recent COVID-19 Pandemic. As of January 14, 2024, the World
Health Organization (WHO) reports concern in the surge of suspected and fatality cases of diphtheria across African countries, with Nigeria bearing the
brunt of outbreak. Recently, Wales in the first few weeks of January, 2024 recorded rapid rise in Whooping cough cases with 135 notifications compared
to 200 in the whole of 2023. Public Health Wales (PHW) expert said BBC. (2024) "With rates suppressed during the lockdowns of the pandemic we are
naturally seeing a resurgence this year." The consultant epidemiologist said “whooping cough has waves of increased infection every three to four years”.
Urging pregnant women, parents, children and all care givers to get vaccinated as quickly as possible. To tackle pertussis disease, Mathematicians around
the globe has formulated several models to this effect. For example, [15] considered the Analytical and Numerical study of whooping cough (pertussis)
using the SEIR model and concluded that the implicit numerical integration scheme is best fit for studying pertussis epidemic. Also [16] considered
pertussis resurgence despite huge vaccination interventions and formulated a model for the transmission behavior of pertussis with maternal derived
immunity. The transmission dynamics of pertussis is influenced by vaccine wanning and natural booster of pertussis immunity, [17] developed a model
SIVRWS (Susceptible-Infected-Vaccinated-Recovered-Waned-Susceptible) in a stationary homogeneous population setting. For instance, \cite{j}, \cite{k},
\cite{l}, \cite{m} focused on diphtheria transmission in Indonesia, \cite{j} proposed a five (5) compartmental model that captures natural immunity
alongside low vaccination coverage as a major concern. Stability analysis of the model was done, results show that reducing the basic reproduction
number S R_0 S to less than 1 via high vaccination and natural immunity is crucial to mitigating outbreaks. \cite{k} proposed an optimal control for
diphtheria outbreaks using the Pontryagin Minimum Principle and numerical methods on SEIQR (Susceptible-Exposed-Infected-Quarantined-Recovered)
model of \cite{j}. The optimal control strategy was essential in determining the most effective intervention combination for minimizing both the

outbreak size and associated costs.



INTRODUCTION CONT.

The fig.1(a) below shows diphtheria infection: grey pseudo membrane covering the tonsils. Also fig.1(b) shows
Whooping cough also known as pertussis a lung or breathing tube infection, which is contagious. a diagram of inhaled

bordetella bacteria through droplets pertussis infection. fig.1(c) shows the disease preventive vaccine for Diphtheria,

Tetanus and Pertussis (whooping cough).

a. Pertussis Infection b. Diphtheria infection c. DTAP Vaccine

Fig.1. Images showing Diphtheria, Perussis and recommended routine vaccine



PROBLEM STATEMENT

The resurgence of diphtheria and Pertussis, exacerbated by gaps in immunization and healthcare strain post-COVID-19, poses a
significant public health threat. This study aims to address the lack of optimal control measures for co-infections like diphtheria
and pertussis in developing countries, where routine vaccinations were disrupted during the pandemic. Through mathematical
modelling and analysis, we seek to provide actionable insights to mitigate the impact of these diseases and strengthen

healthcare systems.. This study intends to fill this gap.



AIM OF STUDY

The main aim of this study is to propose an optimal and non optimal control model to mitigate diphtheria-pertussis disease
co-infection. Also, to develop an implementable control strategy to aid developing countries towards minimizing the total

cost of disease outbreak in the post COVID-19 pandemic.



MODEL FORMULATION

The diphtheria-pertussis co-infection model comprises of eight different compartments, where, the total population at time (t) denoted as N(t) is
given by N(@O)=SWO) +1 () +1p (D) +1 () + (1) + L5 (1) +O(1) + R(1)

the eight sub-divided compartments are Susceptible or vulnerable individuals S(t), the infected individuals with diphtheria in asymptomatic stage
I4p (t)the infected individuals with diphtheria in symptomatic stage /5p (t) the infected individuals with pertussis in asymptomatic [, (t), the
infected individuals with pertussis in symptomatic stage /s (t) the infected individuals with both diphtheria and pertussis in there symptomatic
stage [spp(t) individuals who has recovered from diphtheria, pertussis or dual infection. R(t) Quarantine of individuals showing clinical

symptoms of diphtheria Q(t). Schematic diagram and The equation Governing the formulated model is given by
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MODEL FORMULATION CONTINUE
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The following assumptions is also considered in model formulation:
1. We assumed that x = bN(1 — V) is the total proportion of zero vaccinated individuals where b is the birth rate and V
is the vaccinated at birth.
2. We also assume that due to vaccination during pregnancy, the mother would have passed on strong immunity
to the infant via placenta at foetus stage. Therefore, the Susceptible or Vulnerable compartment S increases by the

influx of non-vaccinated.



MODEL PARAMETER’S
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Effective contact rate for Diphtheria

Effective contact rate for Pertussis

Effective contact rate for Diphtheria-Pertussis dual transmission
Maternally Derived Immunity against Diphtheria infection
Maternally Derived Immunity against Diphtheria infection
Maternally Derived Immunity against Diphtheria-Pertussis
Recovery rate of Quarantine

Recovery rate of symptomatically infected with Diphtheria
Recovery rate of symptomatically infected with pertussis
Recovery rate of symptomatic infected with Diphtheria-Pertussis
Disease induced death rate of Diphtheria

Disease induced death rate of Pertussis

Disease induced death rate of Diphtheria-Pertussis

Natural death rate

Quarantined rate of symptomatically infected with Diphtheria
Birth rate

Vaccination

Modification Parameters

Progression to symptomatic infected stage

0.57/day
0.5-1/day
0.2/day
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0.35
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0.5

0.026
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0.0309
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MODEL FORMULATION CONTINUE

The Basic reproduction number which is the average number of secondary infections produced by an index case of
completely uninfected population (Diekmann & Heesterbeek 2000; Diekmann et al. 1990) was determined using
the next Generation Matrix R, = pFV ~1, where p is the spectral radius, F is the infective class, and V is the
transmission class. The reproduction number represents three terms which are Diphtheria, pertussis and there co-
infection respectively.
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OPTIMAL CONTROL DESIGN

Introducing optimal control measures u,, u,, u; and u,, to determine the best co-Infection intervention strategy. u4 (t): for Diphtheria
represents vaccination and use of personal protective equipment’s (PPE). u, (t): for pertussis represents vaccination and cocooning. us(t):
represents tackling dual infection since same vaccination DTaP is effective for both diseases then us(t) is a combination of u, (t) and

u,(t).uy(t): prevention strategies against second infection by individuals singly infected with Diphtheria or pertussis in there symptomatic

stage.
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RESULTS CONT.

The normalized forward sensitivity index of the reproduction number was explored to determine the strength
and weakness of each parameter in the models prediction.

The magnitude of each parameter on R, was manually calculated and represented in bar chats below.

For instance, The Normalized forward sensitivity index of R differentiable with respect to a given parameter
Bp 1s defined as
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RESULTS CONT.

The sub-plots Fig a. bellow shows the effect of No Optimal control that is u; = u, = u3 = uy = us = 0. Also,

Fig. bu; = u, = uz = uy = us = 1 shows the effects of optimal control.
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CONCLUSION

In this study, a mathematical model for transmission dynamics of Diphtheria and pertussis (whooping cough) is
developed. The basic reproduction number R, was derived and the forward sensitivity analysis on Ry was carried out to
determine the impact of each parameter in disease threshold. It was observed that Vaccination at birth and pregnant
women played significant role in mitigating Diphtheria-pertussis co-infection.

Furthermore, results shows that increase in key intervention parameter like vaccination and maternaly derived
immunity, reduced R,

Also, Based on graphical experiments performed on the Optimal control system, Results shows that the combination
of the four diaseas controllers did not only eradicate diphther and pertussis but drastically reduced its co-infection.

In a nutshell, the combination of the four optimal intervention strategies will lower or eradicate Diphtheria and
Pertussis (whooping cough) reproduction number, increase recovery rate and completely end co-infection if the
strategies are well implemented by policy makers.
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