RECYCLING OF MUNICIPAL SOLID WASTE: A DETERMINISTICAPPROACH. By

¹Abdurrahman, Nurat Olamide ²Ibrahim, Mohammed Olanrewaju ³Ibrahim, Jamiu Omotola Being a paper presentIed at the International Conference on Modelling and Simulation of Complex Systems

ABSTRACTS

- Effective waste management aims at minimizing garbage's detrimental effects on the environment, public health, and aesthetics, which also attempts to recover valuable resources and support sustainable development.
- The New Generation matrix was employed to calculate the reproduction number, the model equations were solved using the Differential Transformation Method (D.T.M.) and the obtained result was simulated using the Maple software. The result shows that waste management will be effective if recycling waste is given the proper attention that it deserves. It also indicates that waste for disposal will be limited and managing waste will become easier.

INTRODUCTION

WHY DO WE NEED TO RECYCLE

- Saves the Planet
- Protects People
- Saves Resources
- Boosts Sustainability
- Recycling is the Key

THE 3 R'S OF RECYCLING

WHAT OTHERS HAVE DONE ON WASTE

Author/year	Research Done	Method	Result
Jonas Petro	identified and elucidated the	1) classifying the population by	indicated that solid
Senzige, Daniel	factors influencing solid	socioeconomic status;	waste generation and
Oluwole Makinde,	waste generation and	2) selecting households for the	composition is highly dependent
Karoli Nicolas	composition in the three	study;	on
Njau, Yaw	municipalities of Dar es	3) determining the number of	population and socioeconomic
Nkansah-Gyeke	Salam and compare	samples;	status of the population
2014	the results with previous	4) sorting and	
	research and data from other	quantifying the solid waste types	
	East African countries.	and	
		5) analysing the	
		results	
Jonas Petro	They formulated a	The model considered an increase	1) solid waste generation for
Senzige and	mathematical model of the	in population due to birth and	each group will
Oluwole Daniel	effects of population	migration. It also considered that	initially increase but as each
Makinde 2016	dynamics on solid waste	each of the three groups has had	group comes to a steady state the
	generation and treatment	different waste generation and	solid generation rate becomes
	considering three groups of	death rates.	constant
	young, Adults and the	Equilibrium points were obtained,	2) it is important for the
	Elderly.	stability analysis of Waste-free and	authorities to encourage
		Waste-Endemic equilibrium were	community initiatives focusing
		discussed, parameters were further	on, compositing, recycling, reuse
		estimated and a conclusion was	and waste-to-energy conversion
		drawn from the results.	so that manageable solid waste
			quantity remains for disposal.
1			

WHAT OTHERS HAVE DONE ON WASTE

Momoh 2019 titled	She Formulated a	Validation of the model	Waste reduction must be from
"Mathematical	deterministic model with	equations was	the source. To control/reduce
Modelling of Waste	six compartments for	performed, Equilibrium	wastage consumption must be
Management: A	waste management to	points were obtained,	reduced to the essentials.
Deterministic	reduce and eliminate the	stability analysis of	
Approach"	consequences of poor	Waste-free and Waste-	
	waste management	persistent equilibrium	
		was discussed, and	
		analytical simulations	
		were performed.	
Akinboro, Alao, &	Presented two types of S-	Solution of the non-	It was recommended that the
Akinpelu, 2014	I-R model to compare	linear S-I-R model were	two method can be used to
	DTM and VIM	solved using DTM and	solve the non-linear differential
		VIM	equations effectively.

SCHEMATIC DI&GRAM

SCHEMATIC DIAGRAM

MODEL EQUATIONS

$$\frac{dA}{dt} = \Lambda - \xi (M + \omega I)A - \mu A$$
$$\frac{dM}{dt} = \xi v (M + \omega I)A - (\alpha_1 + \mu)M$$
$$\frac{dI}{dt} = \xi (1 - v)(M + \omega I)A - (\alpha_2 + \mu)I$$
$$\frac{dC}{dt} = \alpha_1 M + \alpha_2 I - (\rho_1 + \rho_2 + \mu + \delta)C$$
$$\frac{dK}{dt} = \rho_1 C - (\eta + \mu + \delta)K$$
$$\frac{dE}{dt} = \eta K - (\beta + \mu)E$$
$$\frac{dW}{dt} = \beta E - \mu W$$
$$\frac{dD}{dt} = \rho_2 C - \mu D$$

1

MODEL ASSUMPTIONS

- 1. The model assumed that manufactured goods are used for domestic and industrial purposes only.
- 2. The model considers solid waste only.
- 3. The wastes generated in the industries are controlled and minimized.
- 4. The wastes from the collation centre are either recycled or disposed of.
- 5. It is assumed that wastes are properly disposed

Existence of Waste-Free Equilibrium

At the Waste-Free Equilibrium (W.F.E.) point

$$\frac{dA}{dt} = \frac{dM}{dt} = \frac{dI}{dt} = \frac{dC}{dt} = \frac{dK}{dt} = \frac{dD}{dt} = \frac{dE}{dt} = \frac{dW}{dt} = 0$$
(2)

٠

$$A, M, I, C, D, K, E, W = A_0, M_0, I_0, C_0, D_0, K_0, E_0, W_0$$
(3)

$$\left(A_{0}, M_{0}, I_{0}, C_{0}, D_{0}, K_{0}, E_{0}, W_{0}\right) = \left(\frac{\Lambda}{\mu}, 0, 0, 0, 0, 0, 0, 0\right)$$
(4)

$$A - \xi (M_{0} + \omega I_{0})A_{0} - \mu A_{0} = 0$$

$$v\xi (M_{0} + \omega I_{0})A_{0} - (\alpha_{1} + \mu)M_{0} = 0$$

$$(1 - v)\xi (M_{0} + \omega I_{0})A_{0} - (\alpha_{2} + \mu)I_{0} = 0$$

$$\alpha_{1}M_{0} + \alpha_{2}I_{0} - (\rho_{1} + \rho_{2} + \mu + \delta)C_{0} = 0$$

$$\rho_{1}C_{0} - (\omega + \mu + \delta)K_{0} = 0$$

$$\omega K_{0} - (\beta + \mu)E_{0} = 0$$

$$\beta E_{0} - \mu W_{0} = 0$$

$$\rho_{2}C_{0} - \mu D_{0} = 0$$
(5)

$$k_{1} = (\alpha_{1} + \mu), k_{2} = (\alpha_{2} + \mu), k_{3} = (\rho_{1} + \rho_{2} + \mu + \delta), k_{4} = (\omega + \mu + \delta), k_{5} = (\beta + \mu),$$
(6)

WASTE REPRODUCTION NUMBER

When applied to solid waste management the Waste Reproduction Number refers to the rate at which solid waste spreads in the environment. Ibrahim & Abdurrahman (2023). The value of R_0 determines whether the spread of garbage dies out in the community or spreads so widely that it can be considered an epidemic. Whenever the value of the R_0 goes below unity $R_0 < 1$, the spread of the waste is insignificant and waste management becomes easier. When the value is above unity $R_0 > 1$ it means that the spread of waste in the community becomes significant.

$$R_{0} = \frac{\Lambda \xi \left(\mu \omega v + \omega v \alpha_{1} - \mu \omega - v \mu - \omega \alpha_{1} - v \alpha_{2}\right)}{\mu (\alpha_{2} + \mu) (\alpha_{1} + \mu)}$$
7

DIFFERENTIAL TRANSFORMATION METHOD (D.T.M.)

8

$$H(k) = \sum_{k=0}^{\infty} \frac{1}{k!} \left[\frac{d^k h(t)}{dt^k} \right]_{t=0}$$

where H(k) is the transformed function, also called the T-function, and k is a non-negative integer. The inverse differential transform of H(k) is given by

$$h(t) = \sum_{k=0}^{\infty} H(k) t^{k}$$

where h(t) is the original function. The equation (13) above was derived from Taylor series expansion which can be written in the form:

$$h(t) = \sum_{k=m+1}^{\infty} H(k) (t - t_0)^k$$
 10

• THE FUNDAMENTAL PROPERTIES OF DIFFERENTIAL TRANSFORM METHOD (D.T.M.)

S/NO	Existing Functions	Transformed Functions	
1	$h(t) = f(t) \pm g(t)$	$H(k) = F(k) \pm G(k)$	
2	h(t) = af(t)	H(k) = aF(k)	
3	$h(t) = \frac{df(t)}{dt}$	H(k) = (k+1)F(k+1)	
4	$h(t) = d^2 f(t)$	H(k)=(k+1)(k+2)k(k+n)F(k+n)	
	$n(t) = \frac{dt^2}{dt^2}$	H(k) = (k+1)(k+2)F(k+2)	
5	$h(t) = \frac{d^n f(t)}{dt^n}$	H(k)=(k+1)(k+2)k(k+n)F(k+n)	
6	h(t) = 1	$H(k) = \delta(k)$	
7	h(t) = t	$H(k) = \delta(k - l)$	
8	$h(t) = t^{r}$	$H(k) = \delta(k-r); \delta(k-r) = \begin{cases} 1 & k=r \\ 0 & \text{else} \end{cases}$	
9	h(t) = f(t)g(t)	$H(k) = \sum_{m=0}^{k} F(m)G(k-m)$	
10	$h(t) = \frac{f(t)}{g(t)}$	$H(k) = \sum_{m=0}^{k} \frac{F(m)}{G(k-m)}$	
11	$h(t) = \exp(rt)$	$H(k) = \frac{r^k}{k!}$	

$$\begin{split} A(k+1) &= \frac{1}{k+1} \bigg(A\delta(k) - \xi \sum_{m=0}^{k} (M(m) + \omega I(m)) A(k-m) - \mu_1 A(k)) \bigg) \\ M(k+1) &= \frac{1}{k+1} \xi v \sum_{m=0}^{k} (M(m) + \omega I(m)) A(k-m) - k_1 M(k) \\ I(k+1) &= \frac{1}{k+1} \bigg((1-v) \xi \sum_{m=0}^{k} (M(m) + \omega I(m)) A(k-m) - k_2 I(k)) \bigg) \\ C(k+1) &= \frac{1}{k+1} (\alpha_1 M(k) + \alpha_2 I(k) - k_3 C(k)) \\ K(k+1) &= \frac{1}{k+1} (\rho_1 C(k) - k_4 K(k)) \\ E(k+1) &= \frac{1}{k+1} (\rho_1 C(k) - k_5 E(k)) \\ W(k+1) &= \frac{1}{k+1} (\beta E(k) - \mu W(k)) \\ D(k+1) &= \frac{1}{k+1} (\rho_2 C(k) - \mu D(k)) \end{split}$$

 $A(t) = 1.754847056 \times 10^{14} t^4 - 2.212036168 \times 10^{12} t^3 - 1.937760000 \times 10^6 t^2 - 3.621600000 \times 10^6 t + 12000$ $M(t) = -8.774235282 \times 10^{13} t^4 - 5.168124901 \times 10^{10} t^3 + 945199.2000 t^2 + 1.817520000 \times 10^6 t + 6000$ $I(t) = -8.774096771 \times 10^{13} t^4 - 5.540368577 \times 10^{10} t^3 + 927030 t^2 + 1.81740 \times 10^6 t + 6000$ $C(t) = 1.413010420 \times 10^9 t^4 - 30719.30800t^3 - 90868.2t^2 - 3300t + 21000$ $R(t) = 16905.30450t^{3} + 54509.85000t^{2} + 270.00t + 11000$ $E(t) = 235.0658400t^4 - 283.9260000t^3 + 3260.400000t^2 - 7000.00t + 8000$ $W(t) = -75.09424916t^{4} + 1010.442333t^{3} - 3243.500000t^{2} + 6540.00t + 10000$ $D(t) = 11754.74167t^3 + 36339.5t^2 + 340t + 10000$

DISCUSSION OF RESULTS

RESULTS AND DISCUSSION.

The results obtained from the D.T.M. were simulated using the Maple software. They are shown above in Figures 1 to 3. The fig1a shows that the collated waste increases at an exponential rate with time and it gets to the peak after some time, indicating that some of the wastes decompose at the collation centre and some were lost by other means. The recycled waste increases with time as shown in Figure 1b, this is due to the fact that recycled waste is obtained from the collation centre so it increases at the same rate. Figure 2a shows that disposed waste increases with time, based on the sources of disposal. Figure 2b gives the energy generation as reducing with time till a minimum point is achieved and it then increases till a maximum point is achieved. This implies that energy generation from waste will take sometimes before it can be get the optimal point. Wealth creation as shown in figure 3 increases with time as the quantity of waste generated increases.

CONCLUSION

The model of recycling of waste using mathematical approach was formulated, confirmed to be epidemiologically well posed and that its unique solution lies in the positive invariant region. The model equation was solved using the D.T.M. The results from the D.T.M shows that energy generation and wealth creation from waste will take some times before it can be maximized as it relies solely on the quantity of waste recycled for that purpose. This study recommended that concerted effort should be put into waste recycling and energy generation to increase wealth creation and facilitate proper waste management.