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Introduction

Abstract

The Aboodh transform method was combined with the reduced
differential polynomials to solve the Fractional Burger-Huxley(FB-H)
equation of the Caputo-Fabrizio type. The general Burger-Huxley
equation which is a nonlinear partial differential equation that models
the interplay between the reaction mechanisms, convective effects and
diffusion transport observed in many biological and physical systems is
analyzed.
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Introduction

The results gotten are showcased in tabular and graphical forms to
explain the performance and efficiency of the combined methods. It is
discovered that the results derived are close to the exact solution of
the problems illustrated. This work will thus make it simple to study
nonlinear process that arise in various aspect of innovations and
researches.
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Introduction

Definition 1: The Riemann-Liouville fractional derivative of a function g,
is defined as[]:

R.L
0 Iτηg(η) =

1
Γ (τ)

∫ η

0
(η − γ)τ−1g(γ)dγ (1)

where τ > 0, [0, γ] is the interval.
Definition 2: The fractional order of the Caputo derivative is given as[];

c
0Dτ

ηg(η) =
1

Γ(r − τ)

∫ η

0

g(r)(γ)

(η − γ)τ+1−r dγ, (2)

The Caputo-Fabrizio fractional derivative of a function g, is given as [
7-8]:

C.F
0 Dτ

ηg(η) =
N(τ)

Γ(1− τ)

∫ η

a
e

−τ(η − γ)

1− τ g′(γ)dγ, (3)
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Theorem 2

If g and h are piecewise continous,bounded and absolutely integrable
functions, then:

A{g ∗ h}(γ) = vG(v)H(v) (4)

Proof:

By definition,convulsion of two functions g and h for the Riemann
Liouville integral is given as:

(g ∗ h)(γ) =

∫ ∞
0

h(γ − σ)g(σ)dσ (5)

The Aboodh transform of the LHS of equation (18) was expressed as:

A(g(γ) ∗ h(γ)) =
1
v

∫ ∞
0

(g ∗ h)(γ)e−vγdγ (6)
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theorem Cont.

Equation (18) was substituted into equation (19) to obtain:

=
1
v

∫ ∞
0

∫ ∞
0

h(γ − σ)g(σ)evγdγdσ (7)

let Z = γ − σ;
dZ = dγ and γ = z + σ
Therefore,

A(g ∗ h)(γ) =
1
v

∫ ∞
0

∫ ∞
0

h(z)g(σ)e−v(z+σ)dzdσ (8)

Thus,

=
1
v

∫ ∞
0

g(σ)evσdσ ∗
∫ ∞

0
h(z)e−vzdz (9)
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when,

G(v) =
1
v

∫ ∞
0

g(σ)e−vσdσ (10)

and
vH(v) =

∫ ∞
0

h(z)e−vzdz (11)

Equations(23) and (24) were substituted into equation (22) to obtain:

A[(g ∗ h)(γ)] = vG(v)H(v) (12)

where G(v) and H(v) are the Aboodh transform of g(γ) and h(γ) .
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Theorem 3:

Let g(η) be continuous, bounded and integrable then;
the Aboodh transform of g(η) in Riemann Liouville fractional derivative
sense is given as:

A{R.L0 Iτηg(η)} =
G(v)

vτ
(13)

Proof:
From the definition of Riemann-Liouville integral:

0Iτηg(η) =
1

Γτ

∫ η

0
(η − γ)τ−1g(γ)dγ (14)

The definition of convolution was applied on the Aboodh transform of
equation(27) to obtain:

A
[

0Iτηg(η)
]

= A
[

1
Γτ

∫ η

0
(η − γ)τ−1g(γ)dγ

]
(15)
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A
[

0Iτηg(η)
]

= A
{

1
Γτ
{ητ−1 ∗ g(η)}

}
(16)

The Aboodh transform of equation (29)was expressed as:

A
[

0Iτηg(η)
]

= v
1

Γτ
A{ητ−1} ∗ A{g(η)} (17)

was simplified to obtain:

= v
1

Γτ
A{ητ−1} ∗ A{g(η)} (18)

Hence, equation(31) was simplified to obtain:

A
[

0Iτηg(η)
]

=
1

Γτ
∗ Γτ

vτ
∗G(v) (19)

Thus,

A{0Iτηg(η)} =
G(v)

vτ
(20)
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Theorem 4

Let g(η) be continuous, bounded and integrable then, the Aboodh
transform of g(η) in Caputo fractional derivative sense is given as:

A
{c

0Dτ
ηg(η)

}
= vτG(v)−

m−1∑
r=0

vτ−r−2g(r)(0) (21)

Proof:
From the definition of Caputo fractional derivative,

A [c0Dτg (η)] = A
[

0Im−τgm (η)
]

(22)

Let
gm(η) = k(η)

From the result obtained in equation(33)

A
[

0Im−τ
η k(η)

]
=

K (v)

vm−τ (23)
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where ,K (v)=A{k(v)} = A{g(m)(η)}
The Aboodh properties was applied on equation (36)to obtain:

A{gm(η)} = vmG(v)−
m−1∑
r=0

vτ−r−2g(r)(0) (24)

since,

A
{c

0Dτ
γg(γ)

}
=

K (v)

vm−τ (25)

Thus

A
{c

0Dτ
γg(γ)

}
=

1
vm−τ {v

mG(v)−
m−1∑
r=0

vm−r−2g(r)(0)}
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Theorem Cont.

Therefore,

A
{c

0Dτ
γg(γ)

}
= v−(m−τ)

{
vmG(v)−

m−1∑
r=0

rm−r−2gr (0)

}
(26)

= vτG(v)−
m−1∑
r=0

vτ−r−2g(r)(0) (27)

Hence,
The Aboodh transform of Caputo derivative of order τ is given as ;

A
{c

0Dτ
ηg(η)

}
= vτG(v)−

m−1∑
r=0

vτ−r−2g(r)(0) (28)
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Let g(η) be continuous, bounded and integrable then; the Aboodh
transform of g(η) in Caputo-Fabrizio fractional derivative sense is given
as:
The Caputo-Fabrizio fractional derivative in a sobolev space given by
[5] is defined as:

C.F
a Dτ

ηg (η) =
N(τ)

1− τ

∫ η

a
e

−τ(η − γ)

1− τ g
′
(γ)dγ, 0 < τ ≤ 1 (29)

From the definition of Caputo derivative [4],

c
aDτ

ηg (η) = aIm−τ
η g(m) (η)

=
1

Γ(m − τ)

∫ η

a
(η − γ)m−τ−1g(m)(γ)dγ, m − 1 < τ ≤ m (30)
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Equation (21) was simplified to obtain:

c
aDτ

ηg (η) =
1

Γ(1− τ)

∫ η

0
(η − γ)−τg

′
(γ)dγ, 0 < τ ≤ 1 (31)

Let τε [0,1], g(η)ε K’(a,b) for a b, then:
The Caputo-Fabrizio fractional derivative is given as [5]:

C.F
a Dτ

ηg (η) =
N(τ)

1− τ

∫ η

a
e

−τ(η − γ)

1− τ g
′
(γ)dγ, 0 < τ ≤ 1 (32)

Equation (23) was simplified to obtain :

C.F
0 Dτ

ηg (η) =
1

1− τ

∫ η

0
e

−τ(η − γ)

1− τ g
′
(γ)dγ, 0 < τ ≤ 1 (33)

The Aboodh transform properties is applied on equation (24) to obtain:
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A
[

C.F
0 Dτ

ηg (η)
]

=
1

1− τ
∗ A

e

−τγ
1− τ ∗ g′(γ)

 (34)

Equation (25) was further simplified to obtain:

A
[

C.F
0 Dτ

ηg (η)
]

=
1

1− τ
∗ ν ∗ A

e

−τγ
1− τ

 ∗ A{g(τ)(γ)}

=
ν

ν2(1− τ) + τν
∗ A{g(τ)(γ)} (35)

Hence, equation (26) becomes:

A
[

C.F
a Dτ

ηg (η)
]

=
ν

ν2(1− τ) + τν
∗ ντH(ν)−

m−1∑
r=0

gr (0)

ν2−τ+r (36)
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RDTM

Suppose the function w(η, γ) is analytic and continuously differentiated
with respect to space η and γ in the domain of interest then let :

w(η, γ) =
∞∑

k=0

Wk (η)tk (37)

wherew(η, γ) is the original function and the t-dimensional spectrum
wk (η) is the transformed function. The inverse differential transform of
Wk (γ) is defined as:

Wk (η) =
1
k !

[
δk

δtk w(η, γ)

]
γ=0

(38)
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RDTM

And thus:

w(η, γ) =
∞∑

k=0

1
k !

[
δk

δtk w(η, γ)

]
t=0

tk (39)

Given the nonlinear term N[w(η, γ)q(η, γ)] is defined by the RDTM as:

Nw(η, γ)q(η, γ) =
k∑

m=0

Bm (40)

Where Bm is define as the polynomials calculated from the RDTM as;

Bm = Wm(η)Qk−m(η) (41)
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Thus, the polynomials for the nonlinear terms expressed in equation
(46) was obtained as:

Bm = W0Q1,η + Q1W0,η (42)

Thus, the approximated solution is obtained in the form:

w̄m(η, γ) =
m∑

k=0

Wk (η)tk (43)

Hence,
w(η, γ) = lim

m→∞
w̄m(η, γ) (44)
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Methodology

Given the general fractional differential equation of the form:

C.F Dτ
γu(η, γ) + Ru(η, γ) + NU(η, γ) = g(η, γ) (45)

with the given conditions;

u(m)(η,0) = g(η, γ), m = 1,2,3, ...

The inverse Aboodh transform is applied on equation (31) with the
given condition to give;

u(η, γ) = A−1

[
ν2(1− τ) + τν

ν1+τ A [g(η, γ)] +
m−1∑
r=0

u(r)(0)

ν2−τ+r

]
(46)

A−1
[
ν2(1− τ) + τν

ν1+τ × A [Ru(η, γ) + Nu(η, γ)]

]
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Derivation cont’d

Equation (32) is then written as;

u(η, γ) = G(η, γ)− A−1
[
ν2(1− τ) + τν

ν1+τ {A [Ru(η, γ)] + A [Nu(η, γ)]}
]

(47)
Equation (52) was further simplified as;

∞∑
r=0

ur (η, γ) = G(η, γ)−A−1

[
ν2(1− τ) + τν

ν1+τ

{
A

[
R

m∑
r=0

ur (η, γ)

]
+ ...

}]
(48)

where G(η, γ) is the expression that arose from the source term after it
has been simplified.
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From equation(36), the initial approximation is obtained as;

ur (η, γ) = G(η, γ), when : r = 0 (49)

And the recursive relation is defined as;

ur+1 = −A−1
[

v2(1− τ) + τν

ν1+τ {A [Rur (η, γ)] + A [Ar ]}
]

(50)

where τ =1,2,3 and r ≥ 0
The solution u(η, γ) will then be approximated by the series;

u(η, γ) = lim
M→∞

M∑
r=0

ur (η, γ) (51)
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Methodology contd’
Illustration 1

Given the Burger-Huxley Equation(Akram et al., 2023):

C.F
0 Dτ

γu + αuδuη − uηη = βu(1− uδ)(uδ − ω) (52)

with the initial condition:

u(η,0) =
[ω

2
+
ω

2
tanh(σωx)

] 1
δ (53)

The Aboodh and inverse Aboodh transform of Equation (75) alongside
the given conditions were taken to obtain:
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Methodology

Applying the differential properties of the Aboodh transform of
Caputo-Fabrizio on equation (40):

ν1+τ

ν2(1− τ) + τν
A [µ(η, γ)]−

m−1∑
r=0

µ(r)(0)

ν2 − τ + r
= A

[
uηη − αuδuη + βu(1− uδ)(uδ − ω)

]
(54)

A0 = uδ0u0,η (55)

B0 = δu1uδ−1
0 u0,η + uδ0u1,η

B1 =
m∑

r=0

ur (1− uδr )(uδr − ω) (56)

B1 = ur (1− uδ0)(uδ0 − ω)− uδ0δu1(uδ0 − ω) + (1− uδ0)uδ0δu1
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Initial approximation:

u(η,0) =
[ω

2
+
ω

2
tanh(σωx)

] 1
δ (57)

The recursive relation is given as:

µr+1(η, γ) = A−1

{
ν2(1− τ) + τν

ν1+τ

[
A

[
uηη −

(
m∑

r=0

Ar +
m∑

r=0

Br

)]]}
(58)

u1 =
1
δ2

{(
tahn(σωη)2σω2σ2 + tahn(σωη)2ω2σ2 + ...

) 1
δ

}
γ2τ

Γ(2τ + 1)
(59)

u2 =
{(
ωtahn(σωη)2ω3σ2 + ω + tahn(σωη)2ω2σ2 + ...

)} γ3τ

Γ(3τ + 1)
(60)

which tends to the exact solution:

u(x , t) =

[
ω

2
− ω

2
tanh

[
σω

(
η −

(
ωη

δ + 1
− (δ + 1− ω)(ρ− α)

2(1 + δ)

)
γ

)]] 1
δ

(61)
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Table 1a. Comparisons between the numerical and analytical solutions
for equation (52), u(η, γ) at α = β = δ = 1, ω = 10−3 .

η, γ ANALYTICAL ABRDTM HOM[10] |E − ABRDTM|
0.1 0.10975634 0.10975523 0.10975523 4.20161× 10−7

0.2 0.20841821 0.20841811 0.20841811 4.61745× 10−8

0.3 0.30499763 0.30499672 0.30499672 7.67804× 10−7

0.4 0.39852961 0.39852850 0.39852850 3.46567× 10−9

0.5 0.48807962 0.48807951 0.48807951 5.03011× 10−8

0.6 0.57275289 0.57275278 0.57275278 5.12184× 10−7

0.7 0.65170341 0.65170230 0.65170230 3.62834× 10−6

0.8 0.72414233 0.72414223 0.72414223 2.48523× 10−7

0.9 0.78934585 0.78934574 0.78934574 3.31621× 10−9

1.0 0.84666249 0.84666238 0.78934574 3.86431× 10−8
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Table 1b. Comparisons between the numerical and analytical solutions
for equation (52), u(η, γ) at
α = β = δ = 1, ω = 10−3, a = τ = 0.25, b = τ = 0.75 .

φ ANALYTICAL ABRDTM(a) ABRDTM(b) |E − ABRDTM| |E − ABRDTM|
0.1 0.1097563 0.08989609 0.08477066 1.9860× 10−2 2.4985× 10−2

0.2 0.2084182 0.18855896 0.18343353 1.9859× 10−2 2.4984× 10−2

0.3 0.3049976 0.28513758 0.28001215 1.9860× 10−2 2.4985× 10−2

0.4 0.3985296 0.37866936 0.37354393 1.9860× 10−2 2.4984× 10−2

0.5 0.4880796 0.46822037 0.46309494 1.9859× 10−2 2.4984× 10−2

0.6 0.5727528 0.55289364 0.54776821 1.9859× 10−2 2.4985× 10−2

0.7 0.6517034 0.63184316 0.62671773 1.9860× 10−2 2.4984× 10−2

0.8 0.7241423 0.70428308 0.69915765 1.9859× 10−2 2.4984× 10−2

0.9 0.78934585 0.76948660 0.76436117 1.9859× 10−2 2.4984× 10−2

1.0 0.8466624952 0.82680324 0.82167780 1.9859× 10−2 2.4984× 10−2

ABRDTM conference 27 / 28



Introduction

Figure: 1
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