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Introduction

Introduction

♣ HIV/AIDS.

♣ Mathematical modelling

♣ Basic Reproduction number

♣ Incomplete treatment

♣ Public enlightenment campaign.
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Methodology

The schematic diagram describing the flow dynamics of the system (1) is
depicted in Figure 1, while the description of variables and parameters of
the model are presented in Table 1 and Table 2, respectively.
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Methodology

Figure: 1. Schematic diagram for the HIV/AIDS dynamics with incomplete
treatment and public enlightenment campaign, where y = (1 − ρ)βS(I + bA).
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Methodology

The mathematical model governing the transmission dynamics of
HIV/AIDS with incomplete treatment and public enlightenment campaign
is given by

dS

dt
= Λ − βSI − βbSA − µS

dI

dt
= ρβS(I + bA) − (α + γ + µ)I

dIe
dt

= (1 − ρ)βS(I + bA) − (τ + σ + µ)Ie

dT

dt
= γI + τ Ie − (ω + µ)T

dA

dt
= αI + σIe + ωT − (δ + µ)A.

(1)
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Table: 1. The description of variables of the HIV/AIDS model (1).

Variable Description
S(t) Susceptible population
I(t) HIV-infected class
Ie(t) Enlightened infectious individual
T (t) Population under treatment
A(t) Full blown AIDS class
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Table: 2. The description of parameters of the HIV/AIDS model (1).

Parameter Description
Λ Birth rate
ρ Fast progressor rate
(1 − ρ) Slow progressor rate
β Transmission probability of infection
b Modification parameter responsible for the degree of infectiousness
µ Natural death rate
τ HAART treatment rate for enlightened infectious human
γ HAART Treatment rate for infectious human
α Progression rate of individuals with HIV to full blown AIDS
ω Incomplete treatment rate
σ Progression of enlightened individuals with HIV to full blown AIDS
δ AIDS-induced death rate
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Invariant region

Lemma (1)

The biologically feasible region of the HIV/AIDS model (1), given by

D =

{

(S(t), I(t), Ie(t), T (t), A(t)) ∈ R
5
+ : S + I + Ie + T + A ≤

Λ

µ

}

,

is positively-invariant and attracting.
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Proof.

It is apparent from the total population N(t), that the rate of change of
the total population yields

dN

dt
= Λ − µN − δA,

such that
dN

dt
≤ Λ − µN.

Then by standard technique, it follows that

N(t) ≤ N(0)e−µt +
Λ

µ
(1 − e−µt).
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Accordingly, the feasible region D is positively-invariant since N(t) ≤ Λ/µ
whenever N(0) ≤ Λ/µ. In addition, it is either the solution enters D in
finite time, if N(0) > Λ/µ, or the total population, N(t), approaches the
limit Λ/µ asymptotically as t → ∞. Therefore, the region, D, attracts all
solutions in R

5
+. The implication of this from the epidemiological

viewpoint is that all solutions initiated in R
5
+ eventually enter D.
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Positivity and boundedness of solution

Theorem

The solutions S(t), I(t), Ie (t), T (t) and A(t), of the HIV/AIDS model (1)
with non-negative initial conditions in D, remain non-negative in D for all
time, t > 0.
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Proof.

From the first compartment of the model (1), it is apparent that the
following differential inequality holds

dS(t)

dt
≥ − (βI(t) + βbA(t) + µ) S(t),

which after integrating gives rise to,

S(t) ≥ S(0) exp

[

−

(∫ t

0
(βI(ϕ) + βbA(ϕ)) dϕ + µt

)]

> 0, for all t > 0.

Without re-inventing the wheel, it can be shown, in a similar spirit that
the remaining state variables of the HIV model (1) are positive ∀ t > 0.
That is, I(t) > 0, Ie(t), T (t) > 0 and A(t) > 0. This ends the proof.
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Based on the above results, it is sufficient to consider the transmission
dynamics of HIV/AIDS represented by a system of ordinary differential
equations (1) in the biologically feasible region D, where the model is
considered to be mathematically and epidemiologically meaningful.
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Equilibria and Basic Reproduction Number

3.1. Disease-free equilibrium

The disease-free equilibrium point of the HIV/AIDS model (1), designated
by ε0 is obtained as

ε0 = (S∗, I∗, I∗

e , T ∗, A∗) =

(

Λ

µ
, 0, 0, 0, 0

)

. (2)

3.2. Basic reproduction number

The basic reproduction number of the HIV model (1), denoted by R0, is
obtained using the next generation matrix approach (Driessche and
Watmough, 2002), which is the spectral radius of (FV −1), where F is the
appearance of new infection matrix and V is the non-singular matrix for
the transfer of infection in and out of the compartments of the model.
Thus, matrices F and V evaluated at ε0, are given, respectively, by
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where k1 = (α + γ + µ), k2 = (τ + σ + µ), k3 = (ω + µ) and k4 = (δ + µ).
Therefore, the basic reproduction number, R0, is obtained as

R0 =
Λβ{bρ(αk3 + ωγ)k2 + bk1(1 − ρ)(ωτ + σk3) + ρk2k3k4}

µk1k2k3k4
. (3)
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Now, following Theorem 2 of Driessche and Watmough, (2002), the local
asymptotic stability of the disease-free equilibrium point (DFE) of the
HIV/AIDS model (1) is established. And the result is summarized as
follows

Lemma (2)

The DFE, denoted by ε0, of the HIV/AIDS model (1) is locally
asymptotically stable in D provided that R0 < 1 and unstable otherwise.

This implies that HIV/AIDS can be controlled in the population whenever
the initial sizes of the active HIV cases are in the basin of attraction of the
DFE, such that R0 < 1.
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3.3. Endemic equilibrium point

Here, let the endemic equilibrium point of the HIV/AIDS model (1) be
denoted by ε∗∗ = (S∗∗, I∗∗, I∗∗

e , T ∗∗, A∗∗) and represent the force of
infection of the model by λ∗∗ = β(I∗∗ + bA∗∗). Solving and simplifying
system (1) at steady state simultaneously gives rise to the following.
















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
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

















S∗∗ =
Λ

(λ∗∗ + µ)
,

I∗∗ =
ρΛλ∗∗

k1(λ∗∗ + µ)
,

I∗∗
e =

(1 − ρ)Λλ∗∗

k2(λ∗∗ + µ)
,

(4)
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












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





T ∗∗ =
{γρk2 + τ(1 − ρ)k1}Λλ∗∗

k1k2k3(λ∗∗ + µ)
,

A∗∗ =
Λλ∗∗{k3(αρk2 + σk1(1 − ρ)) + ω(γρk2 + τ(1 − ρ)k1)}

k2(λ∗∗ + µ)
.
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3.4. Sensitivity Analysis

The normalized forward sensitivity indexes of the basic reproduction
number R0 relative to its associated parameters, p, are calculated using

χR0
p =

∂R0

∂p
×

p

R0
. (5)
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Table: 3. Sensitivity indices of R0 relative to its parameter values.

Parameters Values Sensitivity indices
Λ 0.10 +1.0000
β 0.006 +1.0000
b 0.45 +1.0000
µ 0.0125 −1.6139
τ 0.2 −0.0593
ρ 0.004 −0.0012
δ 0.01 −0.4444
γ 0.8 −0.0001
ω 0.02 +0.0471
α 0.03 +0.0001
σ 0.9 +0.0705
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Figure: 2. Effect of transmission rate on the incidence of susceptible class.
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Figure: 3. Effects of transmission rate on the incidence of enlightened infectious
class.
Presenter: salaudeenka@gmail.com 24 / 39



Results and Discussion

Time (years)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ID

S
 I

n
d

iv
id

u
a

l 
A

(t
)

0

20

40

60

80

100

120

140
β=0.006 β=0.008 β=0.010 β=0.012

Figure: 4. Effects of transmission rate on the incidence of AIDS class.
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Figure: 5. Effects of modification parameter on the incidence of enlightened
infected class.
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Figure: 6. Effects of modification parameter on the incidence of full blown AIDS
class.
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Figure: 7. Effects of incomplete treatment rate on the incidence of enlightened
infectious class.
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Figure: 8. Effects of incomplete treatment rate on the incidence of treatment
class.
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Figure: 9. Effects of incomplete treatment rate on the incidence of full blown
AIDS class.
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Figure: 10. Convergence of trajectories of HIV-infectious population to a
disease-free equilibrium regardless of the values of initial conditions.
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Figure: 11. Convergence of trajectories of full blown AIDS population to a
disease-free equilibrium regardless of the values of initial conditions.
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Figure: 12. Convergence of trajectories of enlightened infectious population to a
unique endemic equilibrium regardless of the values of initial conditions.
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Figure: 13. Convergence of trajectories of full blown AIDS population to a unique
endemic equilibrium regardless of the values of initial conditions.
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Results and Discussion

3.8. Conclusion

A five-dimensional system of ordinary differential equations incorporating
two distinguishing factors namely, incomplete treatment and public
enlightenment campaign was formulated and analysed. Basic properties
exhibited by the model was investigated using the theory of positivity and
boundedness of solutions.

Consequently, the global dynamics of the model around the disease-free
and endemic equilibrium points were explored. And it was shown that the
model has a globally-asymptotically stable disease-free equilibrium
(endemic equilibrium) whenever the basic reproduction number is less than
(greater than) unity accordingly.
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Results and Discussion

Furthermore, the sensitivity analysis of the model was conducted and
positive and negative sensitivity indices were obatined for the parameters
associated with the basic reproduction number. Parameters with positive
indices tends to increase the value of basic reproduction number when
increased, while parameters with negative indices reduces the value of
basic reproduction number when increased.

Conclusively, it suffices to mention that proper and effective treatment of
HIV infection would go a long way in suppressing the prevalence of the
disease transmission in the population.
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