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@ Dynamics of PUF formation: Polymerization reaction & Blowing agent evaporation
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@ Polym. rxtn: R—NCO + R —-OH—R-NH-C—-0-R + AHuea
Isocyanate Polyol Polyurethane
@ Chem. rxn.(poly.)—Heat gen.—BA evap.—Bubb. nucl.—Gas diff.— Visc.—Foam
@ To study & model the dynamics:

Fittn exp. data(foam TR & BA mol frac)—vap rate of BA mass frac—polymer
conv—density & tempt variation—full 3D model (via fund. laws of FM)
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Statement of research problem

Despite the numerous researches on the physical foaming process of polyurethane (PU),
there is still a gap in understanding how process conditions (such as system pressure and
temperature as well as the blowing agent concentration) influences the foaming
properties. More-so, there is dearth of comprehensive mathematical 3D models in the
literature for controlling and predicting PU foaming properties optimally. Therefore, this
research seeks to contribute to existing knowledge by developing a robust 3D
mathematical models for controlling the physical foaming process and predicting the
foaming properties of PU foam.
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Polymeric foams such as PUF play an essential role across various industries (such as the
automobile industry, aerospace industry, and construction industry). However, producing
foams with customized properties can be very challenging due to the complex dynamics
of the foaming process. Existing studies in this regard, such as Ireka et. al. (2015),
considered the chemically blown polyurethane foaming process, but not the physical
foaming process, and the investigations such as Rojas et al (1972) and Baser khaker
(1994) that considered the physical foaming process were inappropriately modelled while
Tesser et. al. (2004) incorporated effect of water and the study was based on
experiment. These gaps motivates the need for the present study.
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Objectives of the research

The

specific objectives of the research are to

formulate the equations governing the unsteady expansion and dynamics of
polyurethabe foam under non-isothermal condition;

obtain model parameters from existing data via parameter fitting;

solve the resulting system of equations numerically and validate the models with
existing data from literature; and

determine the effects of the process conditions on the final foam density profiles
using the models obtained.
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Research methodoloy

(i) The mathemematical model of the polyurethane foam expansion will be
formulated from the conservation laws of mass, momentum, energy, and the
transport of gas concentration, evolution of density, ideal gas law and appropriate
rheological equations.

(ii) The emerging model parameters will be obtained via fittn. of our developed
temporal evol. model (non-linear ODEs) to exp. data.

(iii) The resulting system of the coupled nonlinear PDE of the unsteady 3D model
will be solved using the finite volume method & the result will be compared with lit.

(iv) The impact of process conditions (temperature, pressure and gas concentrations)
will be examined on the foam density profiles and shown through graphical plots.
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Polyurethane foam: Geometry of reaction system
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Fig. 1: Physical geometry of the PU reacting system
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Model formulation

General equations of flow

Continuity equation:

R 1(0p
== Z£ . 1
V-V ’ (8t +Vv Vp) (1)
Momentum equation:
v . T =
pE:—Vp—FV <M[Vv—|—Vv ) + F 2)
Energy equation:
DT
pcpﬁ =V (HV T) + Qsource — Qsink (3)
Polymeriz./Concen. eqn.:
D
o = DY+ () (4)

NB:p = ppu=f(T,&7)
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PUF: Model 1—Unsteady state reaction system

Model 1: Assumptions

@ a) A point inside the cylinder is considered
@ b) Impact of flow is negligible (i.e conv. terms are negligible)
@ c) The system is unsteady and spatially homogeneous i.e
VT =véE=vv=vVp=0
@ d) The model focuses on the conservation law (3) i.e
pcp% = Qsource — Qsink
@ e) & (4) Polymerization reaction follows Rao et al. (2018) cure model i.e

L = F(&) = k(b+EM)(1—&)"
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Model 1 reduced equations: PU foaming process

Following assumption (e), the polymerization equation (4) becomes

d¢ _ m ’
(e (1e) .
where the parameters

k= [(0.5 - B> <1 + tanh (D(t - t§)>) + 23] mkﬂ exp (;’f) (6)

G(T —Ty)

|0g10 aT = *m, (7)
_ Teo(1—§) + AfTeco
Te= " ¢t ae (®)
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Model 1 reduced equations: PU foaming process

Following assumption (e), the polymerization equation (4) becomes
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Model 1 reduced equations: PU foaming process
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Model 1 reduced eqns: Mass frac. (L) of BA & foam density (pr)

From the mass fraction of the PBA expressed as

xg.  Ms
L= ——"— , 10
(1 - XBL) Mo ( )
The rate of evaporation of the PBA is described by the piecewise function
M, dxgr d
dL Vi(l—iBL)Q ar dif— for T2 Ts
0 for T < Tg
The final foam density pr, is computed according to
p=T = _MetmeL 1+L (12)
v’ VBG + VBL + V% (GlOOORT/PMB)+(L/pBL)+(1/pP)

And the associated initial conditions for Equations (5) - (12) are:
T =26.62°C, £ =0, L = 0.0751

NB: N =X-pp & h=Hp,
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Comparison of experimental & sim. mole frac. at diff
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Fig. 2: lllustration of exp. xg; (Tesser et al., 2004) and model curve

The behaviour of the BA mole fraction (xg) is discribed by

xgL=f(T)=a -exp <b'<_}_—j/>) (13)
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Comparison btw exp. & sim. adiabatic experiment

The polymerization parameters were obtained by considering an adiabatic condition
dT d¢
ppCpI = pPHRE —M‘FM

Temperature (C°)
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Fig. 3: Temperature of polymerization react. (Adiabatic) Tesser et al. (2004)
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Comparison btw. exp. & sim. non-adiabatic experiment

For the non-adiabatic case with effect of HTS,the term below is introduced to calibrate h

dT d
pPCPE :PPHRC% —h(T = To) +I><i

Temperature (C°)
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Fig. 4: Temperature drop due to HTS (non-adiabatic)
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Comparison btw. exp. & sim. impact of BA evap. with Ly = 0.07

The rate of evaporation is introduced to calibrate \’

dT d dL
pPCPE = PPHRCTf = h(T = To) + < th>

Temperature (C°)

140
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T(°C)

time (s)
Experiment, adiabatic © Experiment, Lo=0.0751 Experiment, Lo=0

adiabatic —s—10=0.0751 ——T(C") no bl. Sim.

Fig. 5: Temperature drop due to evaporation for L, = 0.0751.
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Comparison btw. exp. & sim. impact of BA evap. with Ly = 0.0503

dT d¢ ,dL
ppCo = ppHr—> — h(T — To) + | — X' ==
dt dt ( ) dt
Temperature (C°)
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Fig. 6: Temperature drop due to evaporation for L, = 0.0503.
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Hence, the unsteady state model equations for the physical blown PU foam is

o))
k = |:<0.5 - B> (1 + tanh (D(t— t§)>> —1—28] mko exp (;ﬁ),

a(T-Ty)
logyo a1 = — 471, »

T, — Tgo(1—6)+AE Tgoo
§= T &Aoo (14)

ppcp% = PPHR% + (‘ XZ%) —h(T — To),

Mg 1 dxgy ﬂ
Ve G ar g for T=>Te

dL
dt

0 for T < T¢

— 1+Lo
Pf = (GI000RT /PMg)+(L/pg)+(1/0p)

And the associated initial conditions are: T = 26.62°C, £ = 0,L = 0.0751
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PUF: Model 2 formulation (Unsteasy 3D system)

Model 2: Assumptions

@ a) A half open cylinder is considered

@ b) Impact of flow is significant: convective term

@ c) The flow is driven by the volume expansion, S,

e d)

@ ¢e) Variable x & p
)

o f) The model considers all the conservation laws 1 & 2, 3 & 4

The system is unsteady and spatially inhomogeneous in 3D (x,y, z)

@ g) Polymerization reaction follows Rao et al. (2018) cure model

sundayiyiola@gmail.com UNSTEADY 3D MODELLING OF THE POLYURETH February 3, 2026



The unsteady 3D model for the physical blown PU foam is

Continuity equation:

Mom. equation: p(‘gf

Energy equation: pGC, (%Z + V- VT) =V-(kVT)+ pHR% + (— X‘;ﬁ),

Concentration equation:

Evaporation rate equation:

Foam density equation:

v-v=2>5, where

+ V- w) =—-Vp+V- (u[v\ﬂ— V\7T]> + pg,

Z§+\7.vg—k<b+§’"> <1§> ,

Mg 1 dxp| dT
Mo Toxg? T dt for T> T,

dL
dt
0 for T < T

_ 141
Pf = {GI000RT /PMg)+(L/psL)+(1/pp)

(15)
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Literature review: PU foaming process

Author(s) Title Model Quantity Stud-
/(Year) ied/Methodology
Tesser et. al., Modeling of Unsteady:v’ Lo
(2004) Polyurethane Dimension: 0 Numerical
Foam Formation Evapor. Eqn:v'™* integration
Foam Density:v'* | (Livermore Solver
Conv. Term: x | for ODE) LSODE
Heat S/S:v
Seo and Numerical analysis on Unsteady:v T, pr
Youn reaction injection molding Dimension: 3 Finite volume
(2005) of polyurethane foam by Evapor. Eqn:v'* method
using a finite volume method | Foam Density:v'*
Conv. Term: v~
Heat S/S:v
Niyogi et. al., Modeling of Bubble-Size Unsteady:v’ T,P,pr
(2014) Distribution in Water and Dimension: 0 Adams—Moulton
Freon Co-Blown Free Evapor. Eqn:x method
Rise Polyurethane Foams Foam Density:v
Conv. Term: X
Heat S/S:v
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Literature review: PU foaming process

Author(s) Title Model Quantity Stud-
/(Year) ied/Methodology
Ireka et. al., Computational modelling of Unsteady:v’ H(t), T
(2015) dependent properties on the Dimension: 3 Finite volume
complex dynamics of chemi- Evapor. Eqn:x method
cally blown polyurethane fom Foam Density: v *
Conv. Term: v
Heat S/S:v
Rao et. al., Density predictions using Unsteady:v’ T, pr
(2018) a finite element/level set Dimension: 3 Finite element
model of polyurethane foam Evapor. Eqn:x method
expansion and polymerization Foam Density:v
Conv. Term: v
Heat S/S:v
Opadiran & Importance of convective Unsteady: x T,
Okoya boundary layer flows Dimension: 2 Mid-Point
(2021) with inhomogeneous material Evapor. Eqn:x method
properties under linear Foam Density: x
and quadratic Boussinesq Conv. Term: v
app around a horizontal cylinder Heat S/S:v

sundayiyiola@gmail.com

UNSTEADY 3D MODELLING OF THE POLYURETH

February 3, 2026



Literature review: PU foaming process

Author(s) Title Model Quantity Stud-
/(Year) ied/Methodology
Salawu & | Exothermic diffusion-reaction and Unsteady:v’ T
Okoya explosion branch chain Dimension: 1 Finite difference
(2024) of an asymmetrical Evapor. Eqn:x technique
heating channel with Foam Density: x
convective heating Conv. Term: v
Heat S/S:v
Opadiran Mathematical modelling Unsteady:v’ Lo, T, pr
& Okoya of the dynamics Dimension: 3 Finite
(2025) of polymeric foams Evapor. Eqn:v volume
formation Foam Density:v method
Conv. Term: v
Heat S/S:v
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ming process

Begin simulation

Declare sim. parameters

Calculate boiling temp Te
Execute polym. rxn.

Calculate system temp. T
T

Yes

Execute evap. of BA

Calc. foam final density

No
evap.

Plots

End simulation

Fig. 7 Flow chart of the model implementation
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Results & discussion : Polyurethane foam expansion

Video clip: Foam expansion and growth in 3D simulation (300secs)
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Results & discussion : 3D Polyu foaming cross-secti

- FOAM g " & FOAM
N [

Time=300 Time=300

L concentration

l & FOAM

(c)

Fig. 8: 3D plots of foam (a) Temperature (b) Density (c) Blowing agent conc.
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Conclusion

The vital conclusions of the present study include:

@ The theoretical predictions of the blowing agent mole fraction showed excellent
agreement with experimental report.

Furthermore, the model predictions for temperature rise fits well the experimental
data.

(]

The predicted final foam density of the foamed product matches well the experiment.

(]

Results of the 3D model showed realistic prediction of the foaming properties.

The model of the dynamics for physically blown PUF formation presented, would
thus be useful for the development of new foam formulations.
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Contribution to knowledge

This research work will make available mathematical models to pedict the final foam
densities of polymeric foams. Results of the foam densities reported in this study will
enrich the body of literature and stimulate further research on polymeric foams and also
help industrialists in their design and safety assessment of foams in cushioning and
structural applications.
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Danke furs Zuhoren—Question! Question!! Question!!!
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Nomenclature & Units

® 6 6 ¢ o

®© 6 © 6 6 © 6 66 o o o o

p=density (kg/m®); h'= (J/kg.k.s)

v=velocity (m/s); Hr = A= (J/kg.k)

t=time (s); Ky = mol/m?®/Pa; R = (J/mol.k)

p=pressure (N/m? or kg/m.s?); D = m?/s

pu=viscosity (kg/m.s); D = (1/s)

F = pg = body force (gravity) (kg/m*.s?)

cp=specific heat at constant pressure (J/kg.k)

rk=thermal conductivity (W/m.k)

T=temperature (k); v = J/m? Ry = J/mol.K

Q=heat generation constant (W/m*.k); J =1/s.m*

m, n,we, B, A, D, B=fitting parameters

g=acceleration due to gravity (m/s?)

E., xi=activation energy (J/mol), extent of polymerization
at= shift factor for time-temp. superposition

ko; C1, Co= rate coefficient (1/s);WLF constants

Te, Teo=glass transition temperature (K);of the unreacted material
k = Arrhenius-type rate equation (1/s)
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